

Abstract

Català

Aquest treball de recerca és un estudi matemàtic dels diferents elements que for-
men els recorreguts de les muntanyes russes. És habitual que la física sigui el focus
principal a l'hora d'analitzar el comportament de les muntanyes russes, i hi ha nom-
brosa informació sobre el tema. Aquest treball en canvi, té un enfoc matemàtic,
tot cercant la difusió de les matemàtiques aplicades com a mitjà d'anàlisi i tenint
com a objectiu �nal el de poder construir animacions de les diferents seccions d'una
muntanya russa.

Per dur a terme aquesta tasca, s'introdueixen en primer lloc els conceptes i
notació fonamentals que matemàticament es requereixen per aquesta construcció,
per passar a continuació a descriure els elements més signi�catius que pot tenir
una muntanya russa. Aquests elements poden ser de dos tipus: els que es po-
den de�nir de forma explícita (la corba, la paràbola i la catenària) i els que es
de�neixen amb equacions paramètriques (l'hèlix, el gir en línia, el bucle vertical,
i el tirabuixó). Finalment s'inclouen les animacions programades resultat de les
fórmules matemàtiques que descriuen els diferents elements.

També s'inclou un apartat en el que s'analitzen muntanyes russes existents amb
dades enregistrades en temps real.

English

This research project is a mathematical study of the di�erent elements which can
be found in roller coasters. It is quite common for physics to be the focus in the
analysis of the behavior of roller coasters, and there is a lot of information on this
topic. In contrast, this research report is centered on the mathematical point of
view while trying to popularize the use of applied math as a method of analysis
and having as the �nal objective creating animations of the di�erent sections of
roller coasters.

To achieve this, the required mathematical concepts and the fundamental no-
tation are �rst introduced before moving on to the description of each of the most
important elements that a roller coaster can feature. These elements can be clas-
si�ed into two categories: the ones that can be written explicitly (the curve, the
parabola, and the catenary) and the ones that must be written in a parameterized
form (the helix, the in-line twist, the vertical loop and the corkscrew). Finally, the
programmed animations of the mathematical formulas that describe each element
are shown.

Additionally, there is a section in which existing roller coasters are analyzed by
using data collected recorded in real time.

Page 1

Mathematical models in Roller Coasters

Acknowledgments

First of all, my deepest thanks to my supervisor , with whom I
have had the great luxury of learning everything I needed for this project. I'd
also like to thank my Math Olympiad teacher Josep Grané for spending so much
of his time teaching a group of students like me, and for giving me motivation
and support at the beginning of this project. Thanks to both and their advice I
have been able to reach further in my research. I really can say that both have
absolutely motivated me to go towards mathematics.

My sincere thanks to everyone who responded the questions I asked in on-line
forums, with special mention to Dr. Lutz Lehmann from Berlin.

I'd also like to show my immense gratitude to all the roller coaster manufac-
turers who spent some of their time to answer the emails I sent them, especially
Paul Lattin from S&S, for his comments on this project, and who even invited me
to visit their facilities in the US.

Finally, I'd also like to thank my family, especially my younger brother, who
has read my whole project document without complaining. With them, I have
travelled across Europe to visit theme parks and roller coasters.

Page 2

https://math.stackexchange.com/users/115115/lutz-lehmann
https://www.s-s.com/

CONTENTS

Contents Page

Abstract 1

Acknowledgments 2

Table of Contents 4

List of Figures 5

1 Introduction 7

2 Notes on Mathematical Concepts and Notation 9

3 General Method for Finding The Law of Motion 17
3.1 The Di�erential Equation . 20
3.2 Euler's Method . 21
3.3 General Rules . 23

4 Explicit Elements 25
4.1 Curve . 25
4.2 Camelback (Parabola) . 31
4.3 Catenary . 37

5 Parameterized Elements 43
5.1 Helix . 43
5.2 In-line Twist . 49
5.3 Vertical Loop (Clothoid) . 53
5.4 Corkscrew . 59

6 Animations 63

7 Data Collection from Real Roller Coasters 65
7.1 Silver Star . 66
7.2 Python . 67
7.3 Baron 1898 . 68

8 Conclusions 69

9 Bibliography and References 73

10 Appendix I - How this document was made 77

Page 3

Mathematical models in Roller Coasters

11 Appendix II - Roller Coasters I Rode while Making this Research
Project 79

12 Appendix III - Blender source code 81
12.1 Curve Animation . 81
12.2 Camelback Animation . 84
12.3 Catenary Animation . 89
12.4 Helix Animation . 94
12.5 In-line Twist Animation . 98
12.6 Vertical Loop Animation . 102
12.7 Corkscrew Animation . 106

Page 4

LIST OF FIGURES

List of Figures

1 Chart displaying Newton's Third Law 16
2 Representation of the components of the slope vector 17
3 Graphical representation of the circle 26
4 Max and Moritz roller coaster at Efteling, Holland 26
5 Graphical representation of the Free-Body diagram of a sloped curve 29
6 Graphical representation of the Parabola 31
7 Parabola in a Roller Coaster . 31
8 Parabola at the Shambhala Roller Coaster, Port Aventura, Tarragona 32
9 Graphical representation of a Catenary 37
10 Red Force Catenary at Ferrari Land (Port Aventura) 38
11 Graphical representation of the forces of a Catenary 40
12 Graphical representation of a Helix 43
13 Toboggan roller coaster at Hersheypark 44
14 Helix at the Python roller coaster, Efteling 44
15 Sideview of the animated Helix (using Blender 3D) 48
16 Graphical representation of an In-line Twist 49
17 In-line Twist of the Furius Baco coaster, Port Aventura 49
18 Three di�erent views of the animated In-line Twist (using Blender

3D) at the frame 900 . 52
19 Vertical Loop of the Blue Fire Megacoaster, Europa Park 53
20 ASTM standards for G-force . 56
21 Matterhorn Blitz roller coaster at Europa Park, Germany 59
22 Capture of Blender . 64
23 Acceleration of the Silver Star (01.09.2022) 66
24 Picture of the whole Silver Star . 66
25 Acceleration of the Python (24.08.2022) 67
26 Picture of the Python . 67
27 Acceleration of the Baron 1898 (24.08.2022) 68
28 Picture of the Baron 1898 . 68
29 Capture of GeoGebra drawing di�erent curves related to the clothoid 69
30 Capture of the editor used . 77

Page 5

Mathematical models in Roller Coasters

Page 6

1 Introduction

1 Introduction

Roller coasters are perhaps the most iconic invention that humanity has created to
amuse and thrill people. Their evolution along time, from the �rst Russian moun-
tain slides to the actual mega-coasters we see nowadays, is an amazing example of
the science behind the service of leisure.

Modern roller coasters can be really complex, but in the end they can all be
divided in small fragments which can be studied individually. In the roller coaster
industry, these small fragments are called elements . By joining and evolving ele-
ments, new roller coasters can be built, providing all sorts of amusing experiences
to the rider.

As the title of this report suggests, I will be using a mathematical point of
view all along the project to analyze roller coasters and their elements, with brief
inclusions of physical laws. But why math? Math is a crucial concept to the design
of roller coasters, but from my point of view it isn't appreciated enough. In other
research projects, people opt for using physics to analyze or create their own roller
coasters, but I thought it would be more interesting to take on a mathematical
and geometrical view. I also thought that it would be interesting to animate the
di�erent elements of a roller coaster that I analyzed, and having the mathematical
functions that form the shape of these elements makes it much natural, rigorous,
and precise.

This research project consists of the mathematical analysis of the di�erent
elements that can be used to build roller coasters. Note that in the analysis of the
resulting forces, the force of friction is not considered unless it is said otherwise.

As is described later, elements may have several de�ning characteristics. For
example, any element can be either inverting or non-inverting, depending on the
vertical tilt angle. Once the tilt angle surpasses 135º, an element is considered
an inversion. There are some elements that may even have a double inversion,
meaning that riders are inverted twice in a small interval. Some elements can also
be divided into subsections of track, so it is considered a di�erent element if there
is an intermediate or connecting element to distinguish them, like a curve or a
break run. In the case of the elements that are mentioned in this report, they all
are di�erent types of curves.

I have divided the elements into two main categories: explicit elements and
parameterized elements. The explicit ones are the simplest and are solved in a
relatively similar way. These elements only need the x, y and z coordinates to
express the full route. Parameterized elements, on the other hand, are used when
a curve cannot be written explicitly and are quite more complex and present more
di�culties in the way they are solved. This is because a certain value of one of the
axes can have more than one point or the curve self-intersects. For these shapes,
I will also need the parameter θ to be able to express the full function.

Page 7

Mathematical models in Roller Coasters

As a general rule, each element analyzed is described using four main sections:
an introduction and explanation with a drawing of the corresponding shape, the
mathematical equation(s) and their procedures, a small explanation and represen-
tation of the resulting forces and �nally a link to an animation that shows the
element in action in a rendered video.

The �nal objective of this research project is to be able to animate the di�er-
ent shapes with respect to time. For the �nal animation, I have prioritized the
conservation of energy over following the actual shape.

Stating that there is a lot of generic information on roller coasters already
available to the general public through Internet and books, I have opted not to
include a historical section. Although they could complement and contextualize
this project, they aren't relevant to the topics covered. Despite that, I must admit
that much of this information has been used to gain the knowledge to structure
the document. So, I have selected some of the most interesting resources I have
used and included them in the Bibliography section. Additionally, for some of
the elements I have still used a comparison to previous models and ideas to be
able to explain the peculiarities of the modern elements in a better and more
comprehensive way.

As a side note, real roller coaster designers don't actually use all the math
explained here for every single roller coaster. Some computer programs, such as
the NoLimits Roller Coaster Simulator , allow designers to easily create realistic
ride proposals to send to potential customers for a bidding on a project without the
burden of calculating all the formulas and forces. As the focus of this report are the
calculations themselves, I have not used any simulator as a such and instead, the
animations have been built using Blender 3D , an open-source rendering software,
by using the �nal formulas calculated. Thus, it is Blender which, through being
programmed, solves the mathematical model of the equation of motion.

All the mentioned animations which I have programmed are published in my
YouTube channel and this document itself can also be reached through the Internet,
at my site , along with a link to the video, as I want to
promote the use of math in roller coasters. This is also the reason why this research
project is written in English. Also, all the source code is publicly available through
GitHub. Thus, I have made all the contents of the project, from the document to
the source code, available to other researchers under a CC BY-SA license.

Along the document, some links are included, which lead to the animation on
YouTube of the several elements analyzed. These animations have been designed
and rendered with Blender 3D using Python (see Appendix III for the correspond-
ing source codes).

This document has been written in the mathematical text format LATEX, as
explained in Appendix I.

Page 8

https://www.nolimitscoaster.com/
https://www.blender.org/

2 Notes on Mathematical Concepts and Notation

2 Notes on Mathematical Concepts and Notation

To make this report more readable, here are some concepts and notations used
throughout this document that may not be known to the reader.

� Main Variables: First of all, the main variable that I'm going to use is time,
represented as t. I'm going to use r to mean the whole vectorial position,
which can be divided into the x, y and z components. The �rst and second
derivatives of the position r, are velocity v, and acceleration a respectively.
I'm going to use subscript to indicate a certain component of the velocity (vx,
vy and vz) or acceleration (ax, ay and az). For circular movement, I'm going
to use their respective Greek letters: φ for angle, ω for angular velocity and
α for angular acceleration. On the other hand, I'm going to use the letter
g to represent gravity (for this project, g = 9, 8 m/s2 as we are going to
consider that we stay relatively close to the surface of the Earth) and m for
mass (although I will be assuming that there is no force of friction, so I'm
not going to talk much about mass).

� Secondary Variables: To represent angles, I won't be using α as it is
already used for the angular acceleration and might cause confusion. Instead,
I'm going to use β for slope angles, σ for the angle between vectors and θ
for rotation angles (from a speci�ed point of view and commonly used as
an additional parameter in which the function can be parameterized). Any
other parameter will be represented by using a λ. The slope of a curve
will be represented using a p (which means that tan β = p). Additionally,
sometimes one of these variables will be equaled to k, which symbolizes that
the variable is an arbitrary known constant, and therefore does not depend
on any dynamic variable like position, angle, or time. Lastly, the variable n
will be used to denominate an arbitrary step in Euler's method (explained
below) by using n+ 1 as the following step.

� Energy: In physics, the conservation of energy principle states that the
total energy of a system always remains constant1. The conservation of
energy is only true for conservative forces, which are the ones in which the
path followed from one point to another doesn't a�ect the total mechanical
energy. In this project, we are going to talk about three main types of energy:
kinetic energy, potential energy and mechanical energy. Kinetic energy is the
energy an object has when moving. The formula for the kinetic energy is
Ec = 1/2 ·m · v2. As we can see, the kinetic energy depends on the velocity.

1 ↱This system has to be isolate, as there can't be energy entering or exiting the system to

preserve this principle.

Page 9

Mathematical models in Roller Coasters

Potential energy is the energy an object has because of its location. Its
formula (assuming a constant gravitational �eld) is: Ep = m · g · h. Note
that the potential energy depends only on the height. Mechanical energy is
the total energy (the sum of potential and kinetic energy): EM = Ec + Ep.

� Forces: There are six main types of forces: weight, normal force, force of
friction, net force, the centripetal acceleration, and any external forces.

� The weight (represented usingW) is produced by a gravitational force,
usually from a planet and does therefore not require any contact be-
tween the two objects. This force is constant as long as we are staying
at the same distance from the planet. This force varies slightly with the
position of the object, and it is produced by both objects simultane-
ously, but as we are going to consider that one of the objects is planet
Earth, the force produced by the object attracting the planet gets ne-
glected. The weight is represented using the formula: W = m · g.

� The normal2 force is the force generated by a surface holding an object.
Therefore, the normal force counteracts any other force applied on the
object (usually the weight) so that the acceleration in that axis is 0.

� The force of friction is the resistance that a surface presents for mov-
ing an object. Therefore, it is always opposite to the direction of move-
ment. There are two types of friction forces: static forces, which stop an
object from gaining velocity, and dynamic forces, which stop the object
once it has a certain velocity3.

� The net force is the vectorial sum of total forces: Fnet =
∑

F . It
represents the resulting force on an object, as it takes into account the
direction of each force, so that any opposite component of a pair of
forces gets canceled out.

� The centripetal force is the force used to keep an object in a circular
trajectory. Although it is technically only the consequence of another
force, the centripetal force can be calculated by using all the forces that
go towards the circle. The centripetal acceleration is therefore always
perpendicular to the track.

� The rest of the forces are classi�ed as external forces because they
come from external sources such as a magnetic �eld (magnetic force),
a motor (mechanical force) or a rope (tension). In this project, we will

2 ↱In mathematics, the word normal is a synonym for perpendicular.
3 ↱This force requires for the two objects to be in contact, but air also counts and produces

resistance.

Page 10

2 Notes on Mathematical Concepts and Notation

not consider any external forces acting on an object, as this does not
happen in real roller coaster (except in the initial launches or lift hills).

� When talking about forces, they can easily be divided into two components:
the vertical and the horizontal, but that's not always best way to do so.
Sometimes, we are going to use the tangential (which is tangent to the curve:
F⊤) and sometimes the normal (which is perpendicular to the curve F⊥).
When there is more than one force involved (which is usually the case), we
will use the previously mentioned concept of net force to imply the vector
sum of forces.

� It is important to remember the di�erence between mass and weight. When
talking about the mass of an object (measured in kg), we are referring to the
physical property of the object produced by its molecules. Weight is used
to talk about the attractive force produced by two objects with mass. The
connection between mass and weight is therefore: W⃗ = m · g⃗.

� There is another important distinction to be recalled regarding the terms
speed and velocity. Firstly, speed is the time rate at which an object moves
along a path, while velocity is the rate and direction of the movement of an
object. Therefore, speed is a scalar value (in m/s), while velocity is a vector.
So, we can say that speed represents the modulus of the velocity. When
talking about acceleration, we will always be referring to the vector unless
we explicitly say that we have the modulus of the acceleration.

� Ordinary derivatives: There are three ways in which we can represent
derivatives. Newton's notation states that the symbol ẏ is used to symbol-
ize the derivative of the function (in this case y), but only with respect to
time. If the derivative is not with respect to time, we can use one of the

other notations. Leibniz's notation is written as
df(x)

dx
(i.e., derivation of the

function f(x) respect to the variable x) and it is used mainly in physics and
other applied mathematics. However, the most common notation for deriva-
tives in theoretical mathematics is the use of Lagrange's notation, which uses
primes to indicate the derivative: f ′(x) (this would represent the derivative
of the function f(x) with respect to x, which is the variable commonly used

in equations). This way, ẏ is the equivalent form of
dy

dt
and y′(t). The num-

ber of dots, the exponent or the number of primes indicate the order of the
derivative. So, the third derivative with respect to time of the function y

could be represented as:
...
y =

d3y

dt3
= y′′′(t).

Page 11

Mathematical models in Roller Coasters

� Partial derivatives: Partial derivatives are used in some branches of math-
ematics. They are quite common, and are used when there are several inde-
pendent variables, but we just want to integrate with respect to one of them.

Partial derivatives are written using the following notation:
∂y

∂x
, which is

similar to Leibniz's notation. Despite this, the
d

dx
notation is also used to

represent partial derivatives depending on the context.

� To avoid confusion, the symbol |x| is used as the absolute value of the num-
ber, and ∥x⃗∥ to denominate the modulus (length) of a vector.

� Vectors: It is important to spot another couple of di�erent symbols used
while talking about vectors. Mainly, u⃗ is used to represent the vector using
the components, ux and uy. To represent the modulus of the vector, ∥u⃗∥ is

used. Therefore, according to the Pythagorean theorem, ∥u⃗∥ =
√
u2
x + u2

y.

Additionally, the unitary vector4 of u⃗ is represented as û, and it is calculated

using û =
u⃗

∥u⃗∥
=

(
ux

∥u⃗∥
,
uy

∥u⃗∥

)
. It is important to note that a variable may

or may not have the vector above it, and it is considered a di�erent variable
depending on it, for example p and p⃗5.

� Multiplication of Vectors: There are two main ways in which vectors
can be multiplied: scalar product or vector product. When talking about a
scalar product, the result of the multiplication is a scalar value, and has
therefore no directorial dimensions. The formula for the scalar product is
(where σ is the angle between the two vectors, v⃗ and w⃗):

v⃗ · w⃗ = ∥v⃗∥ · ∥w⃗∥ · cos(σ)

On the other hand, a vector product does result in another vector, and it
can be calculated using the formula (where σ is the angle between the two
vectors, v⃗ and w⃗, and û is a unit vector perpendicular to both v⃗ and w⃗ in an
additional dimension):

v⃗ × w⃗ = ∥v⃗∥ · ∥w⃗∥ · sin(σ) · û

� Lastly, we are going to consider that the object stays a�xed to the shape,
like in actual roller coasters. This means that we are going to try to �t the
mathematics to the model, which will give us a clear result when animating
the shape.

4 ↱A unitary vector is a vector that derives from another one but has modulus 1.
5 ↱This is usually avoided by using other variables, but it is sometimes necessary. In the few

cases that this may happen, the two values will probably have a relation in meaning.

Page 12

2 Notes on Mathematical Concepts and Notation

Types of Equations

The following are the types of equations that will be mentioned in this project:

� Algebraic equation: The most common type of equations, in which the
unknown variable or variables is present using only elementary functions.
The degree of the equation is known by the highest exponent of the unknown
variable. These are usually solved by �nding a way to isolate the unknown
variable.

� Di�erential equation: In a di�erential equation, the unknown function
appears in conjunction with its derivatives. The order of this equation is
determined by the highest derivative. These are more di�cult to solve than
the algebraic equations, as sometimes only the type of function that would
solve the function itself can be �gured out and additional values or conditions
to �nd the �nal explicit equation may be necessary to be known.

� Explicit equations: In an explicit function, the output variable (depen-
dent variable) can only be expressed directly in terms of the input variable
(independent variable). Dependent and independent variables are commonly
found in an explicit function. The values of the variables in an explicit func-
tion are easier to determine because of its more straightforward expression.
On the contrary, an implicit function is one that cannot be expressed as one
variable in terms of another variable.

� Parametric equations: A parametric equation is a group of functions
of several independent variables called parameters that make up a curve
or surface. Usually, all these parameters depend on a common variable.
These type of equations are commonly used as coordinates (x, y). A lot
of functions can be parameterized, but only some parametric equations can
be transformed into simple functions. Almost all explicit functions (which
are de�ned as: y = f(x)) can be parameterized easily by using a change of
variable: {

x = t
y = f(t)

� Discretized equation: In this type of equation, variables are represented as
a function with respect to the previous value. Because of this, it is necessary
to set the initial conditions. In this report, they will be used as an alternative
for �nding the solution to a di�erential equation. The main downside of this
type of equation is that only the value at a speci�c point can be calculated
by using small increments from the start up to that value. The smaller the
increments, the more precise the solution will be, as we get closer to an actual
di�erential.

Page 13

Mathematical models in Roller Coasters

Equations can also have the following properties:

� Order and degree of an equation: Although they are similar, order and
degree do not mean the same. On one hand, order is used to express the
highest derivative and only makes sense in di�erential equations (as algebraic
equations always have order 0). On the other hand, degree represents the
highest power of an equation. The degree of an expression is mainly used in
algebraic equations but can also be used in di�erential equations (di�erential
equations with a degree higher than 1 tend to be harder to solve). There are
some functions that receive a special classi�cation according to their degree:
linear equations are degree 1, quadratic equations have degree 2, cubic are
degree 3, and so on.

� Linearity: A linear algebraic equation is the one that draws a line. Its
formula is y = m · x+ n, where m and n are constants. In a linear equation,
the variable is only multiplied by a constant value. Similarly, in di�erential
equations each derivative is only multiplied by a constant value and isn't
raised to a power. Generally, linear equations are solvable with relative
ease, but most non-linear equations usually cannot be solved exactly and are
the subject of much ongoing research. However, in some cases non-linear
equations can be solved in speci�c ways, for example reducing the order of
the equation or numerically discretizing the equation (like in initial value
problems).

� Ordinality: An ordinary equation has a �nite, also called discrete, set of
variables. A partial equation has an unknown or in�nite number of variables.
To solve these di�erential equations, we approximate the partial di�erential
equation into an ordinary di�erential equation.

� Homogeneity: An equation is considered homogeneous if the variable in
which the function is derived appears by itself, without multiplying or divid-
ing the function. This classi�cation isn't used as often, as very few equations
have speci�c solutions for being homogeneous. An equation cannot be linear
and homogeneous at the same time, as the function or one of its derivatives
would be multiplied by a number that isn't constant.

Page 14

2 Notes on Mathematical Concepts and Notation

Newton's Laws of movement

First Law: Inertia

�An object at rest remains at rest, and an object in motion remains in motion at
constant speed and in a straight line unless acted on by an unbalanced force.�

Newton's �rst law states that every object will remain at rest or in uniform
motion in a straight line unless compelled to change its state by the action of
an external force which doesn't get balanced out. Balancing out the net force of
an object is quite easy (all objects that are not moving are balanced out). This
tendency to resist changes in a state of motion is inertia and is represented by the
force of friction. If all the external forces cancel each other out, then there is no
net force acting on the object. And if there is no net force acting on the object,
then the object will maintain a constant velocity. [1]

This law of motion is essentially only theoretical, as there is always an unbal-
anced force acting on every object, usually the force of friction. As we are going
to assume that there is no force of friction in this project, it is sometimes possible
to apply this law, at least to one of the axes (usually the horizontal one, when the
weight and the normal force cancel out).

Second Law: Force

�The acceleration of an object depends on the mass of the object and the amount
of force applied.�

Newton's second law de�nes that the sum of forces is equal to change in mo-
mentum6 per change in time. This can be represented as:∑

F⃗ =
dp⃗

dt
=

p⃗1 − p⃗0
t1 − t0

=
m · v⃗1 −m · v⃗0

t1 − t0

As we know that a⃗ =
v⃗1 − v⃗0
t1 − t0

, we can rewrite the expression above as7:∑
F⃗ = m · a⃗

This equation proves that an object subjected to a force will accelerate propor-
tionally to the value of that force. It also tells us that the object will accelerate
inversely proportional to the mass, as heavier object will experience less accelera-
tion than a lighter object when applied under the same net force. This also means
that there can't be an acceleration without an external force causing it.

6 ↱Momentum, p⃗, is de�ned to be the mass m of an object times its velocity v: p⃗ = m · v⃗.
7 ↱We are considering that the mass of an object is constant, otherwise this simpli�cation

would be impossible.

Page 15

Mathematical models in Roller Coasters

Newton's Second Law also proves his First Law, as if the net force is zero, the
acceleration has to be zero, considering that every object has mass.

It is important to note that velocity, force, acceleration, and momentum are
vector quantities, and have magnitude and direction.

Third Law: Action and Reaction

�Whenever one object exerts a force on another object, the second object exerts an
equal and opposite on the �rst.�

When an object receives a force from another object, it produces the same force
on that object. For example, the gravitational pull that the earth exerts on an
object is the same force that this object produces on the earth. This means that
every force comes from the interaction between two objects, which can be either
attractive or repulsive.

For objects to move freely, the Second Law show us that the acceleration that
results from those forces is proportional to the mass of the object, which means
that each object will accelerate di�erently.

This law justi�es the normal force produced by an object holding another
object and proves that the normal force is always perpendicular, as the reactive
force produced to hold the object always points at it.

F⃗abF⃗ba

Figure 1: Chart displaying Newton's Third Law

Page 16

3 General Method for Finding The Law of Motion

3 General Method for Finding The Law of Motion

As a general rule, the �rst steps to obtain the formula that describes an object's
motion with respect to time are always focused on �nding a di�erential equation
to solve. As in all mechanical systems, the expression of motion comes from the
acceleration which is projected into the shape of the element through the forces
and restrictions involved. In roller coasters, we know that the force of the track
against the object, the normal force, is perpendicular to the curve itself, so we can
calculate the total acceleration by canceling it out with the normal component
of the gravitational force. In the chart below, we can see a representation of a
function with a tangent vector showing the vertical and horizontal components.
The angle between the tangential line and the horizontal axis is represented as the
β angle.

−6 −4 −2 0 2 4 6
−30

−20

−10

0

10

20

30

β

a

b

f = x3 − 2x

Figure 2: Representation of the components of the slope vector

This slope can be calculated using either the angle or the derivative: p = b
a
=

tan(β) = f ′(x). The slope will be used to select the component of the gravitational
force which gets projected onto the element.

There are three ways in which we will be able to obtain the resulting total ac-
celeration, which are: the trigonometric projection, the vectorial projection
with respect to a variable and the vectorial projection with respect to a
parameter. The trigonometric projection allows us to use the angle of the slope
to calculate the e�ect of gravity on the object. In contrast, the vectorial projection
uses vectors to do the same. We are going to decide on one or the other depending

Page 17

Mathematical models in Roller Coasters

on which variables we have and which of those stay constant along the trajectory,
and also on which variables change with time.

The most important variable we must consider is the slope at each point, as
the trigonometric projection method is mostly useful when the angle of the slope
remains constant. This is because in our formulas, the slope of the curve will
be used, and we will therefore have the angle of the slope inside a trigonometric
function, which will not be solved easily.

Trigonometric projection

Firstly, we are going to project the gravitational pull to the shape of the element
so that all the other forces get canceled out. This can be done using the cosine
function of the angle as follows:

∥a⃗T∥ = g · cos θ

The vertical acceleration can then be calculated exacly the same way, as we can
now use the total tangential acceleration and the slope angle to �nd its vertical
component.

∥a⃗Z∥ = ∥a⃗T∥ · cos θ = g · cos2 θ

Vectorial projection with respect to a variable

Another method is to project the gravitational pull using vectors. These avoid
using the slope of the curve by using the derivative function. To do so, we de�ne
two vectors: one for the full vertical gravitational force, which is g⃗ = (0, g) and
one for the tangent, which is u⃗ = (1, f ′(x)) for any point (x, f(x)).

Now we are going to use the scalar product, which is de�ned as:

u⃗ · g⃗ = ∥u⃗∥ · ∥g⃗∥ · cosσ

By using a unit vector for u⃗, the formula becomes:

û · g⃗ = ∥g⃗∥ · cos(σ)

Notice how ∥g⃗∥ · cos(σ) is the decomposition of g⃗ in the direction of u⃗. This
gives us the tangent component of the gravity that doesn't cancel out with the
normal force. If we had that ∥u⃗∥ = 1, the scalar product of the two vectors would
equal the projection of g⃗ to the tangent component of the parabola. To get the

unit vector, we divide the vector by its modulus: û =
u⃗

∥u⃗∥

Page 18

3 General Method for Finding The Law of Motion

Next, we are going to transform the u⃗ vector into a unitary vector using the
corresponding formulas:

û =
u⃗

∥u⃗∥
=

(1, f ′(x))√
1 + f ′2(x)

This unitary vector is always tangent to the curve, which will allow us to
�nd the vector that is tangent to the shape but has the modulus of the tangent
acceleration produced by gravity. The tangential acceleration indicates how much
the velocity changes at each interval, and it is the direct representation of the
gravitation force with respect to the slope at that point.

∥g⃗∥ · cos(σ) = û · g⃗ =
(1, f ′(x))√
1 + f ′2(x)

· (0, g) = g · f ′(x)√
1 + f ′2(x)

Now that we have the modulus of the acceleration, we are going to multiply it
by the unitary vector again to obtain the total vector that de�nes the acceleration:

a⃗ =
g · f ′(x)√
1 + f ′2(x)︸ ︷︷ ︸

Modulus of the acceleration

· (1, f ′(x))√
1 + f ′2(x)︸ ︷︷ ︸

û

=

(
g · f ′(x)

1 + f ′2(x)
,
g · f ′2(x)

1 + f ′2(x)

)
= (⃗ax, a⃗y)

Vectorial projection with a parameter

Similarly to the vectorial projection for explicit curves, the objective this time is
to use the unit vector to project the gravity towards direction of movement. Now,
the unit vector can be found using the following formula (for this explanation, I'm
going to assume that we have a three-dimensional curve de�ned by the parameter
θ):

û =
u⃗

∥u⃗∥
=

(x′(θ), y′(θ), z′(θ))√
x′2(θ) + y′2(θ) + z′2(θ)

∥g⃗∥·cos(σ) = g⃗ ·û = (0, 0, g)· (x′(θ), y′(θ), z′(θ))√
x′2(θ) + y′2(θ) + z′2(θ)

=
g · z′(θ)√

x′2(θ) + y′2(θ) + z′2(θ)

a⃗ =
g · z′(θ)√

x′2(θ) + y′2(θ) + z′2(θ)︸ ︷︷ ︸
Modulus of the acceleration

· (x′(θ), y′(θ), z′(θ))√
x′2(θ) + y′2(θ) + z′2(θ)︸ ︷︷ ︸

û

=

(
g · z′(θ) · x′(θ)

x′2(θ) + y′2(θ) + z′2(θ)
,

g · z′(θ) · y′(θ)
x′2(θ) + y′2(θ) + z′2(θ)

,
g · z′2(θ)

x′2(θ) + y′2(θ) + z′2(θ)

)

Page 19

Mathematical models in Roller Coasters

3.1 The Di�erential Equation

These three methods have now given us an expression to �nd the acceleration.
Using this acceleration, we can now �nd the position at any point in time. As we
surely don't have a formula with respect to time which we could derive, we have
another intermediate parameter (usually an angle of rotation). If we can form a
relation between this parameter and time, we can use this in our original equation
to get the �nal formula.

On one side of the di�erential equation, there is usually the acceleration, ex-
panded using the chain rule and the product rule, and on the other side of the
di�erential equation, there is usually the acceleration found using one of the meth-
ods above.

Although these methods can help us solve some of the elements, there are some
others that require a small step further to solve the resulting di�erential equation.
This is mainly the case of the shapes in which there are two di�erent values for a
certain point in the x, y or z axis. Another problem these shapes might have is
that the slope of the curve is completely vertical and therefore it is not derivable.
The quickest workaround for both problems is to introduce a new variable, such
as the arc length or the angle of rotation from a certain point of view, and �nding
an equation for each axis with respect to that new variable. This should produce
a new di�erential equation that can be solved using one of the previous methods.

We know that the acceleration is the second derivative of the position. If we
can equal the tangential component of the gravity to the second derivative of
the position, we might �nd a di�erential equation which we can solve. We know
that our position isn't with respect to time, so we won't be able to �nd r̈ easily.
Including a parameter in the derivative is quite easy with the chain rule (explained
below).

We would now equal the two expressions we have and then obtain a di�erential
equation. In case of having a higher derivative, we would have to use the product
rule, which would result in a bigger expression which probably cannot be solved as
easily. For some di�erential equations, it is not necessary to solve them analytically.
Instead, we can solve them numerically using some theorems like Euler's method
or the midpoint method.

Page 20

3 General Method for Finding The Law of Motion

3.2 Euler's Method

Euler's method is a procedure designed for solving ordinary di�erential equations
using small splines8. As this method is based on the polygonal approximation
of a certain curve at small increments, the precision of this method is inversely
proportional to the number of segments, and we should therefore try to make the
reduce the increments as much as possible.

This method allows solving �rst-order di�erential equations numerically. For
a higher order, this method can be used twice at each step. Because of this, the
precision of the shape is going to decrease exponentially over time, as di�erential
equations are usually going to be second-degree ODE (equations which include the
second derivative of the function).

Euler's method is quite simple, but we need some speci�c conditions. Firstly, we
need to have an expression for the �rst derivative of the function. This expression
is therefore an ordinary di�erential equation and should be expressed as a formula
which uses only constant values and the variable of the function itself (which can't
be in a derivative form). In our case, the expression we have won't depend on time
(otherwise we would simply integrate the derivatives of the function until we get
our formula with respect to time), but on other parameters, such as the position
x.

As the shape satis�es the given di�erential equation, we can think of it as a
formula by which the slope of the tangent line to the shape can be calculated at any
point by knowing only the value of the function at that point. Sometimes, the value
of a derivative is also necessary, but that can also be calculated by using Euler's
method as long as the degree of this derivative is strictly lower than the degree of
the di�erential equation itself. As the derivative shows us the rate of change of
a certain function, we can use small increments to determine the direction of the
function at that moment, and therefore, its position. Considering that ∆x is the
step size, also represented as the change in the variable x of the function, from n
to n+ 1: ∆x = xn+1 − xn, we can express Euler's method as:

f(x)n+1 = f ′(x)n ·∆x+ f(x)n

As each position is calculated from the previous one, we need to have the initial
values of position and velocity for this method to work. This is why Euler's method
is considered an initial value problem, along with similar structured theorems.

In the case where we have a formula for the second derivative of a function, we
can still use the same formula, but this time we will obtain the �rst derivative at
each instant. Using Euler's method again with the value of the �rst derivative, we
can then obtain the solution of the function.

8 ↱Splines is the segmentation of a curve using straight lines.

Page 21

Mathematical models in Roller Coasters

Therefore, Euler's method allows to obtain a system of discrete equations,
which result in an expression for the result of the function at a certain moment by
knowing the value of the derivative and the function of the previous step like this:{

f(x)n+1 = f ′(x)n ·∆x+ f(x)n
f ′(x)n+1 = f ′′(x)n ·∆x+ f ′(x)n

As we are going to be using time, velocity, and acceleration, we can transform
the formula into:

r⃗ =

{
xn+1 = vn ·∆t+ xn

vn+1 = an ·∆t+ vn

For parametric equations, we also use Euler's formula more than once, one for
each component. Sometimes we can establish a relation between the two inde-
pendent variables, but we are going to use both components of the parametric
equation because we will prioritize the conservation of energy over following the
actual shape.

Page 22

3 General Method for Finding The Law of Motion

3.3 General Rules

Chain rule

The states that if we have a composition of functions, the derivative can be calcu-
lated by using the following formula (considering the function x(y(t))):

dx

dt
=

dx

dy
· dy
dt

Integration by parts

This rule is used to solve some integrals which have a speci�c format. If we have
two functions, f(x) and g(x), we can write the following formula:∫

f(x)g′(x) dx = f(x)g(x)−
∫

f ′(x)g(x) dx

Leibniz product rule

The product rule states that we can calculate the derivative of a product of func-
tions by using the following formula:

d

dx
(f(x) · g(x))′ = f ′(x) · g(x) + f(x) · g′(x)

In our case, we want to derivate a function with respect to time. For example,
if we have the function y(θ) and we derivate it with respect to time once by using
the chain rule, we get:

ẏ(θ) = y′(θ) · θ̇(t)

Now that we have a multiplication of independent functions, if we want the
second derivative with respect to time of that function, we are going to �nd the
derivative using the product rule:

ÿ(t) =
d

dx

(
y′(θ) · θ̇(t)

)
= y′′(θ) · θ̇2(t) + y′(θ) · θ̈(t)

Leibniz integral rule

In calculus, the Leibniz integral rule is a method that allows us to di�erentiate
any integral of the form: ∫ b(x)

a(x)

f(x, λ) dλ

Page 23

Mathematical models in Roller Coasters

The formula for Leibniz's integral rule states the following:

d

dx

(∫ b(x)

a(x)

f(x, λ) dλ

)
= f(x, b(x)) · d

dx
b(x)

−f(x, a(x)) · d

dx
a(x)

+

∫ b(x)

a(x)

∂

∂x
f(x, λ) dλ

Frequently, some components of this sum will get canceled, because either a(x),
b(x) or f(x, λ) is constant, and it's derivative is therefore 0.

Page 24

4 Explicit Elements

4 Explicit Elements

4.1 Curve

The basic curve is an element that changes the direction of the track. It is produced
by a force pulling the rider towards the center of the curvature, as the roller coaster
would otherwise continue on a straight path. This force is called the centripetal
force and may be caused by several factors: a slope, a cable, the track of a roller
coaster itself, and so on. Sometimes, several of these factors are used at the same
time to minimize the e�ort of each individual force. This implies that some forces
applied to the object moving along the curve may change direction or be divided
into components.

To allow the object to remain on the curve, the latter usually has a sideways
slope pointing inwards at a certain degree. In roller coasters, there is no explicit
need for this slope as the force of the tracks should be enough to produce the
centripetal acceleration necessary, but it favors the conservation of energy and the
smoothness of the rider's experience. On the other hand, some coasters use the
absence of the slope, extreme banking, or an outward slope to add thrill to the
ride. These variations receive the following names:

� Banked curve: This is just a slightly sloped curve (about 60 degrees). It is
very common and sometimes imperceptible as it is mainly used to connect
two pieces of track together that point in di�erent directions.

� Over-banked curve: An over-banked curve is an element that consists of
a turn or curve in which the track tilts beyond 90 degrees but less than 135
degrees.

� Over-banked inversion: It is similar to an over-banked curve, but it tilts
more than 135º, which is the angle from which an element is considered an
inverting element.

� Outward banked airtime hill: Over-banked curve that tilts outwards
instead of inwards. These are quite rare and produce a small sensation of
being launched into the air.

� Flat turns: As the name says, these element curves are completely �at
without any slope, giving to the rider the sensation of tipping over (found
in Wild Mouse roller coasters, which are known for the sensation of tipping
over they produce as they have several �at turns in a row, e.g., Matterhorn
Blitz in Europa-Park). This type of element is quite old, as it was easy to
design and build.

Page 25

Mathematical models in Roller Coasters

Figure 3: Graphical representation of the circle

Figure 4: Max and Moritz roller coaster at Efteling, Holland

Source: By , CC BY-SA 3.0 (2022)

4.1.1 Equation

First, we are going to consider a perfect curve in which the radius remains constant.
This produces a perfect circle, which has the following equation:

x2 + y2 = R2

Now, we must �nd an alternative for this formula to be able to draw the actual
circle with respect to time, as we can't use the one above because there is no
dynamic variable. There are a lot of curves that cannot be written as a single

Page 26

4 Explicit Elements

equation in terms of only x and y. To deal with this, we are going to introduce a
new parameter, φ, to produce a parametric equation. This new parameter would
be the angle of rotation of the circle, which we are going to use to �nd a relation
with time.

x2

R2
+

y2

R2
= 1

By using the expression sin2(x) + cos2(x) = 1, we then know that:

x�2

R�2
= sin�2(φ)

y�2

R�2
= cos�2(φ)

In parametric form, we would write:

r⃗(φ) =

{
x(φ) = R · sinφ
y(φ) = R · cosφ

As the acceleration is zero, we know that there are no forces left that are
perpendicular to the horizontal plane9. This is proven by Newton's second law:

az = 0 =

∑
Fz

m

A similar principle can be applied to the horizontal axis, as the normal force
produced by the tracks to keep the vehicle in the circular motion is applied as the
centripetal force to keep the object in the circular trajectory. This means that we
are assuming that we are in a perfect uniform circular motion.

We can now state that the total circular acceleration is equal to 0. This way
we obtain a very simple di�erential equation:

α(t) = φ̈(t) = 0

Now we have all the information we need. Solving this equation is very straight-
forward, we just have to integrate twice, and we will obtain the formula for the
uniform circular movement:

ω(t) = ω0 + a · t︸︷︷︸
0

9 ↱This is because the gravitational force and the vertical component of the normal force

cancel out.

Page 27

Mathematical models in Roller Coasters

φ(t) = φ0 + ω · t

Lastly, we substitute φ in the expression stated above to get the circular po-
sition with respect to time (note that the initial angle is omitted, as we are going
to adjust our perspective so that the initial angle becomes negligible):

r⃗(t) = (R · sin (ω · t), R · cos (ω · t))

As a side note, most curves don't have a constant radius. These changing
radiuses increase and decrease gradually and allow for the track to move towards
another section of the ride. The change is not arbitrary, there are special types of
variations that allow for a smooth experience and dampen any extreme G-forces
that may be produced during the change in direction. The rate of change of a
curve can vary (not just in a constant way, the rate of change of a curve can also
change along the curve), producing the di�erent types of curves that we �nd in
roller coasters.

4.1.2 Resulting forces

In the �at circle, the weight and the vertical component of the normal force cancel
out and the centripetal force, produced by the tracks of the roller coaster, keeps
the object in a uniform circular motion. The centripetal force can be calculated
by using Newton's second Law:

F⃗c = m · ac = m · ω2 · r

Despite this, most curves that are intended to be used at high speeds, such
as roller coaster or highways, are banked. Most banked curves are usually unno-
ticeable, but roller coasters may feature a wide range of banking as the vehicle is
always kept on track. Outwards slopes are extremely rare and produce an outwards
force, as every object tends to follow a straight line. Inwards banked curves are the
most common, and make the movement smoother, as the only the perpendicular
component of the weight vector cancels out with the normal force, allowing for the
tangent component to push the wagon inwards.

For example, let's consider an inwards banked circle. From a front view, we can
see that the slope allows for the object that is going through the curve to stay in
the rotating motion. To simplify we are going to consider that there is no external
force that is keeping the roller coaster in the circle. The only internal forces
left are the gravitational pull and the normal force, and the resulting centripetal
acceleration. The free-body diagram would be drawn as follows:

Page 28

4 Explicit Elements

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

β

β

mg

N

N · sin β

N · cos β

x

y

Figure 5: Graphical representation of the Free-Body diagram of a sloped curve

In this banked curve, the gravitational vector gets canceled out with the vertical
component of the normal force, mg = N · cos β. Therefore, the centripetal force
consists only of the horizontal component of the normal force, N · sin β. With
these two formulas, we can easily calculate the inwards force exerted on the object
and, therefore, the centripetal acceleration.

When in a roller coaster, the track is usually responsible for the rotating motion,
so this horizontal component is not necessary. This is the case of the �at turns
found in Wild Mouse roller coasters. Steeper curves allow for soft changes in forces
and higher speeds with less risks.

Page 29

Mathematical models in Roller Coasters

4.1.3 Animation

This animation was quite easy to make, I just had to make time proportional
to the angle traversed through the frames. This animation respected both the
conservation of energy and the actual shape. I obtained the expected result. When
rendering, I opted for having the camera above the circle to better illustrate the
shape.
The code for the animation can be found Appendix III - Curve section.
The link to the animation on YouTube is as follows:

Page 30

4 Explicit Elements

4.2 Camelback (Parabola)

Roller coasters often feature a section called camelbacks. These are just hills and
valleys that resemble a parabola. A camelback is designed to lift riders out of
their seats and provide a feeling of weightlessness, commonly known as airtime,
produced by the negative G-forces. Some roller coasters are basically a series of
camelbacks, built with huge steel structures that can reach impressive heights.

−4 −2 0 2 4
0

5

10

15

20

25

x

f
(x
)

Figure 6: Graphical representation of the Parabola

Figure 7: Parabola in a Roller Coaster

Source: WYFF4

Page 31

Mathematical models in Roller Coasters

Figure 8: Parabola at the Shambhala Roller Coaster, Port Aventura, Tarragona

Source: By Sotti - Own work, CC0, https://commons.wikimedia.org/

4.2.1 Equation

To generalize, I'm going to consider that the camelback shape is produced by a
perfect parabola. The static parabola is de�ned by the quadratic equation, which
is as follows (with a, b and c constants):

y = ax2 + bx+ c

To simplify, we are going to consider the vertex of the parabola (the point where
the parabola changes its direction), as the origin of coordinates (0, 0). This means
that we can neglect the terms bx + c, and only take into consideration y = ax2.
Also note how the parabola is placed vertically, but I am going to use the letters x
and y for the coordinate system as it is most used in mathematics when working
with two-dimensional shapes.

Notice how the variable a can be either positive or negative. The minus symbol
allows for the parabola to make a hill. If a were positive, the parabola would form
a valley-like shape, which would be located in between two camelbacks. Also
note how the G-forces that result at the top and bottom of camelbacks also have
opposite symbols.

In a free parabolic throw, the horizontal component remains constant (without
acceleration), while the vertical component accelerates at a constant rate. This is
due to the lack of forces horizontally and gravity being the only force vertically.

Using Newton's second law (F⃗ =
dp⃗

dt
, where p⃗ = mv⃗), we know that

∑
F⃗ = m · a⃗,

where
∑

F is the sum of forces, m is the mass and a is the acceleration. As the
only force is gravity, the sum of forces equals the weight:

∑
F = W , which leads

us to m · a = W = m · g, which means that a = g = −9.8m/s2. Mathematically,
this behavior can be described by the following quadratic equations:

Page 32

4 Explicit Elements

r⃗ =

 rx(t) = (vx)0 · t+ x0

ry(t) =
a · t2

2
+ (vy)0 · t+ y0

Derivating these ones results in the formulas for the velocity components:

v⃗ =

{
vx(t) = (vx)0
vy(t) = a · t+ (vy)0

Derivating them again we get the acceleration:

a⃗ =

{
ax(t) = 0
ay(t) = a (constant)

Despite this, our parabola is produced by the force of the tracks, so the parabola
doesn't follow a free trajectory, which is why the speed at its maximum height
doesn't equal zero as it would in a free throw. In fact, due to the changes in the
weight of the vehicle at each ride, the force of friction produces slight changes in
the speed at the top of the camelback, so it wouldn't be certain whether the object
would continue or if it would fall back. This is why roller coasters have a margin
of speed, so that the object always continues forward.

To solve this, we are going to use the change in the slope of the parabola. We
know that the derivative of a function is equal to the slope of the tangent line in

that point: f ′(x) = p = tan β. This implies that x =
tan β

2a{
f(x) = ax2

f(y) = y

Next, we are going to use vectorial projection. To �nd the tangent vector, we
are going to use the slope to �gure out how much the vehicle advances vertically
when moved one unit horizontally: u⃗ = (1, f ′(x)) = (1, 2 · a · x). This gives us
the tangent vector at the point (x, f(x)) = (x, a · x2) on the shape. We are also
going to consider the gravitational force as a vector with the following components:
g⃗ = (g, 0).

We need to project the force of gravity to the tangent of the parabola to know
the total acceleration as the perpendicular component of the gravitational pull gets
canceled with the force of the track. The scalar product allows us to establish that
relation without the need of the slope angle. The formula for the scalar product
is u⃗ · g⃗ = ∥u⃗∥ · ∥g⃗∥ · cos(σ) (with σ the angle formed between u⃗ and g⃗). Notice how
∥g⃗∥·cos(σ) is the projection of g⃗ in the direction of u⃗. This gives us the component
of the gravity that doesn't cancel out with the normal force. If u⃗ were a unitary
vector, meaning that ∥u⃗∥ = 1, the scalar product of the two vectors would equal

Page 33

Mathematical models in Roller Coasters

the projection of g⃗ to the tangent component of the parabola. To get the unit

vector, we have to divide the vector by its modulus: û =
u⃗

∥u⃗∥

∥a⃗∥ = ∥g⃗∥ · cos(σ) = u⃗ · g⃗
∥u⃗∥

=
(1, 2ax)√
1 + 4a2x2

· 2axg√
1 + 4a2x2

=
(2axg, 4a2x2g)

1 + 4a2x2

Knowing that ∥a⃗∥ = (ẍ, ÿ), we can split the equation above into its two com-
ponents:

r̈(t) =

ẍ(t) =

2ax(t)g

1 + 4a2x2(t)

ÿ(t) =
4ay(t)g

1 + 4ay(t)

This total acceleration is tangent to the parabolic shape at all times. This set
of di�erential equations will allow us to isolate ÿ(t) and consequently y(t). As we
know that y = ax2, if we solve the di�erential equation for one of the variables, we
will get the other one easily. We will solve for ÿ as we have already been working
on the y-axis.

To do this, Euler's method can be used to obtain a series of discretized solutions.{
v̇ =

2axg

1 + 4a2x2

ẋ = v(x)

This way, we can calculate the velocity and position using the previous position
and speed. The smaller we make the increments of t, the more accurate the
animation will be.

r⃗ =

xn+1 = xn + v(xn) ·∆t
yn+1 = yn + v(yn) ·∆t

v(xn) =
2axng

1 + 4a2x2
n

v(yn) =
4ayng

1 + 4ayn

I could have written y as a function of x, but I opted to calculate each one
on their own to maintain the conservation of energy even though the object will
slightly shift from the parabolic shape.

Page 34

4 Explicit Elements

Brachistochrone curve

Sometimes, roller coaster manufacturers use a brachistochrone curve instead of a
parabolic one. It is the fastest curve on the vertical plane (with loss of height) as it
optimizes the velocity gained from the gravitational force initially and converting
it into kinetic10. For the roller coaster industry, this means that the rides are
shorter while gaining a lot of speed. Usually, a brachistochrone curve is used
mainly on really wide curves with slow drops. Steeper drops may likely feature
the parabolic curve. The brachistochrone curve is formed by the inversion of the
cycloid curve, which is formed by analyzing the path of a point at the exterior of
a smooth circumference as it rolls over a plane.

The formula for the cycloid curve is as follows:

r⃗ =

{
x = R · (φ− sinφ)
y = R · (1− cos(φ))

4.2.2 Resulting forces

The resulting forces are all produced by the change in direction. The normal force
is equal to the normal component of the weight. If the normal force and the weight
were to produce a 90-degree angle, the object would fall freely, as the normal force
would equal zero. Therefore, the normal force is never bigger than the weight and
they are only equal to each other when they are opposite from each other.

When the vehicle in the roller coaster descends, the weight force favors the
direction of movement and the velocity increases. The tangent component of the
weight, which points downwards, is the only force left so the rider feels lighter than
normally.

At the lowest point of the shape, the weight gets canceled out with the normal
force, but the change in direction produces the inertia to push the vehicle down.
This is one of the moments of most extreme forces and the rider feels then a lot
heavier than usual.

Lastly, during the ascend, the direction of movement is opposite to the tangent
component of the weight (the normal component gets canceled out again) and the
rider feels heavier than usual as he/she gets pulled in the direction of the track.
Although it's portrayed in the animation, roller coasters don't usually stop at the
middle of the ride unless they change direction11, and generally it is a controlled
stop, not simply the action of the friction or weight. Theoretically, it would be

10 ↱In fact, the word Brachistochrone comes from Ancient Greek and it translates to �shortest

time�.
11 ↱This is the case of roller coasters which go backwards for a section of the ride. An example

of this is Raik at Phantasialand, Germany or Stunt Fall at Parque Warner Madrid, Spain.

Page 35

Mathematical models in Roller Coasters

a sensation opposite to that produced at the vertex of the parabola, resulting in
a sensation of weightlessness (also called airtime). Instead of going back, a lot of
roller coasters feature another parabolic shape right after �nishing the one before,
and the rider can feel some airtime at the highest point.

4.2.3 Animation

To make this animation more visual, I decided to add a simple parabolic shape
that shows where the ball is going through instead of drawing a path. Although
the object goes slightly out of the shape, the conservation of energy principle is
preserved, and the ball does therefore have the correct speed relative to the position
at each moment.
The code for the animation can be found Appendix III - Parabola section.
The link to the animation on YouTube is as follows:

Page 36

4 Explicit Elements

4.3 Catenary

The catenary curve is the curve formed by a uniform thread that is hanging
from two points. A thread being uniform means that its density and diameter are
equal at all its points.

In modern roller coasters, the catenary isn't used often, as the change in steep-
ness isn't as smooth as in a parabola. Some Top Hat roller coasters (as seen in
�gure 10) feature a shape that resembles the catenary. Despite this, the main uses
of catenaries are architecture and in zip lines.

In architecture, we can see a clear example of the usage of the catenary in the
Sagrada Família by Gaudí. He built the model at a smaller scale upside down
using hanging threads of di�erent lengths.

Zip lines are attractions in which the rider holds on to a small seat tied to the
thread. Then, the rider coasts through the zip line until the breaks turn on and
the rider is caught at the end by a net. An example of this is El Vol de l'Àliga
(in Campdevànol, Girona), which is 270 meters long and has a 40-meter height
di�erence.

−4 −2 0 2 4
0

5

10

15

20

x

f
(x
)

Figure 9: Graphical representation of a Catenary

Page 37

Mathematical models in Roller Coasters

Figure 10: Red Force Catenary at Ferrari Land (Port Aventura)

Source: PA community

4.3.1 Equation

We know that the equation for the catenary is the following:

f(x) = a · cosh
(x
a

)
=

a

2
·
(
e

x
a + e−

x
a

)
Firstly, we are going to use Newton's Second Law to determine the vertical

acceleration of the vehicle.∑
F = m · a =⇒ a = g · cos2 β

We can easily �nd the derivative of the function by using the chain rule with
the substitution y = coshu and u =

x

a
:

f ′(x) = a · d

dx
cosh

(x
a

)
= a ·

(
dy

du

)
·
(
du

dx

)
=

�a

�a
sinh (u) = sinh

(x
a

)
Using the formula explained above, we obtain the following non-linear di�er-

ential equation:

a⃗ =

(
g · f ′(x)

1 + f ′2(x)
,
g · f ′(x)

1 + f ′2(x)

)
=

(
g · sinh

(
x
a

)
1 + sinh2

(
x
a

) , g · sinh2
(
x
a

)
1 + sinh2

(
x
a

))

Page 38

4 Explicit Elements

Euler's method tells us that we can express this equation as:

r⃗x =

{
v̇x = g·f ′(x)

1+f ′(x)

ẋ = vx

r⃗y =

{
v̇y = g·f ′(x)

1+f ′(x)

ẏ = vy

If we add the derivative and integrate with respect to time, we obtain the
formula (we are going to consider the constants to be the previous velocities and
positions):

r⃗n+1 =

(rx)n+1 =

 (vx)n+1 =
g · sinh

(
x
a

)
1 + sinh2

(
x
a

) ·∆t+ (vx)n

xn+1 = (vx)n ·∆t+ xn

(ry)n+1 =

 (vy)n+1 =
g · sinh2

(
x
a

)
1 + sinh2

(
x
a

) ·∆t+ (vy)n

yn+1 = (vy)n ·∆t+ yn

This is our �nal formula for the catenary. Notice how we could also solve
the di�erential equation for only one axis and having a single pair of discretized
equations. This would result in a more accurate animation in terms of the math-
ematical shape, but I have opted for using discretized equations on both axes to
maintain the conservation of energy principle.

4.3.2 Resulting forces

The resulting forces applied on the track are almost identical to the parabola,
but the rate of change is not as constant, as the �rst derivative is a hyperbolic
function, not a linear one. As we are considering the mass to be constant, by
Newton's second Law: ∑

F⃗ = m · a⃗

As the force and the acceleration are proportional to each other, the graphical
representation of the acceleration is the same as the graphical representation of
the resulting net force but scaled accordingly to the mass. To simplify, we are
going to consider a test object that has mass 1. Therefore, the representation of
the forces would be the second derivative.

Page 39

Mathematical models in Roller Coasters

f(x) = a · cosh
(x
a

)
=⇒ f ′(x) = sinh

(x
a

)
=⇒ f ′′(x) =

1

a
· cosh

(x
a

)

−4 −2 0 2 4
0

5

10

15

20

x

f
′′ (
x
)

Figure 11: Graphical representation of the forces of a Catenary

4.3.3 Animation

Similarly to the parabola, the animation for the catenary worked well, although
there is a bigger shift in the precision of the animation. This has been solved by
decreasing the step size and therefore increasing the precision.
The code for the animation can be found Appendix III - Catenary section.
The link to the animation on YouTube is as follows:

Page 40

4 Explicit Elements

Page 41

Mathematical models in Roller Coasters

Page 42

5 Parameterized Elements

5 Parameterized Elements

5.1 Helix

A helix is a type of curve in the three-dimensional space. It is characterized by the
fact that the tangent line at any point makes a constant angle with the horizontal
axis. Because of the force of gravity, every object that is going through the helix
is supposed to increase speed on the downwards axis. As the position is �xed by
the track, we experience a pronounced increase in the tangential speed instead.

Helices aren't common on roller coasters, and they aren't a specially thrilling
or exciting element. This is because helices tend to have small changes in G-
forces, which makes them unexciting, but it also means that they can be used to
easily connect most of the other �gures. This is the case of short ascending or
descending helices, which are often used to connect two near pieces of track that
are at a relatively close height. On the other hand, long ascending helices are used
as a replacement for the chain lift hill in small roller coasters.

As the helix isn't a complicated element to build and doesn't involve much
danger, older roller coasters feature this element more often in conjunction with
�at turns. Similarly, some water attractions may also include these sections, as
the increase of speed is much more noticeable since it starts with a very low speed
and aren't strapped to a wagon, which means that the rider is thrown to the sides
of the tube.

−0.5
0

0.5
1−1

−0.5
0

0.5
1

0

5

10

15

x(t)
y(t)

z(
t)

Figure 12: Graphical representation of a Helix

Page 43

Mathematical models in Roller Coasters

Figure 13: Toboggan roller coaster at Hersheypark

Source: by Myselfalso, CC-BY-SA (2012)

Figure 14: Helix at the Python roller coaster, Efteling

Source: By , CC BY-SA 3.0 (2022)

5.1.1 Equation

The static helix with respect to the rotation from above (as used in the chart 12)
can be de�ned by the following parametric equations, where R is the radius, θ is
the angle (seen from above) and p represents the inclination of the helix and is
measured as a proportion between the vertical and horizontal movement:

Page 44

5 Parameterized Elements

r⃗(θ) =

x(θ) = R · cos(θ)
y(θ) = R · sin(θ)
z(θ) = −p · θ

This means that the helix has a circular shape when it is observed from above.
Notice how this equation is written as r⃗(θ), so we cannot know the velocity just
by taking the derivative directly, as we know that the velocity varies with time.
Therefore, our goal is to rewrite this equation as a function with respect to time.
Additionally, we know that θ also changes with time, which means that the equa-
tion from above could also be written as r⃗(θ(t)), which will allow us to �gure out
the formula. A perfect helix has a constant radius and slope, so the only thing
that varies with time is the angle.

As we only take into consideration two forces, the force of gravity and the force
of the tracks that allows for the object to stay in its path (the normal force), we
will take a closer look only to the vertical component of the equation above. As
of now, the equation for the vertical component is written as z of θ (z(θ(t))), but
we want it to be z of t (z(t)).

First, we can express the slope using trigonometry considering that β is the
angle formed between line tangent to the slope and the vertical axis:

tan β =
R∆θ

∆z
=

−R(
∆z
∆θ

) =
−R

p

Now we can take into account that the vertical acceleration is constant. This
means that we know that the tangent acceleration is equal to the gravity times
the cosine of the angle:

∥a⃗T∥ = k = g · cos β
By the same rule, the vertical acceleration is the tangent acceleration times the

cosine of the angle.

∥a⃗Z∥ = ∥a⃗T∥ · cos β = g · cos2 β

We also know the following: aZ =
d2z(θ(t))

dt2
= z̈(θ), but our equation is

currently z(θ), not z(t). To solve this, we can multiply and divide the fraction by

dθ:
dz(θ)

dt
=

dz(θ)

dθ
· dθ
dt

=
dz(θ)

dθ
· β̇(t)

We can use the chain rule to derivate our formula, which results in:

d2z(θ(t))

dt2
=�������d2z(θ)

dθ2
· θ̇2(t)︸ ︷︷ ︸

0

+
dz(θ)

dθ︸ ︷︷ ︸
−p

· θ̈(t) = −p · θ̈(t)

Page 45

Mathematical models in Roller Coasters

We know that the second derivative of z is equal to ∥aZ∥. Adding this to the
equation we obtained above, we get: −p·θ̈(t) = g ·cos2(β), which is a second-degree
di�erential equation.

Now we will simplify cos2(β) in terms of other constant variables (this step isn't
strictly necessary, but it allows for a clearer solution because our original equation
also had the p as a slope, so β would depend on p anyway).

We will start using an expression we found before: tan(β) = −R

p

sin β

cos(β)
= −R

p

We also know that: cos2(β) + sin2(β) = 1. As sin(β) =
√

1− cos2 β, we can

replace it in the formula above: cos(β) = − p

R
· sin β = − p

R
·
√

1− cos2 β

cos2 β ·
(
1 +

p2

R2

)
=

p2

R2

cos2 β =
p2

R2 + p2

When we then substitute this above, we get the following di�erential equation:

θ̈(t) = − g · p
(R2 + p2)

Lastly, we integrate the expression with respect to time to obtain the speed:

θ̇(t) =
−g · p
R2 + p2

· t+ C1

And yet again to obtain the position:

θ(t) =
−g · p

2R2 + 2p2
· t2 + C1t+ C2

Here we can see that two constant of integration appear. They indicate the
initial velocity and height (C1 and C2, respectively) of the object.

θ(t) =
−g · p

2R2 + 2p2
· t2 + v0t+ z0

If we substitute this in our original formula, we obtain:

r⃗ =

x(t) = R · cos
(

−g · p
2R2 + 2p2

· t2 + v0t+ z0

)
y(t) = R · sin

(
−g · p

2R2 + 2p2
· t2 + v0t+ z0

)
z(t) = −p ·

(
−g · p

2R2 + 2p2
· t2 + v0t+ z0

)

Page 46

5 Parameterized Elements

In this last formula, R is the radius, g is the force of gravity (−9.8m/s2 on the
surface of the Earth), p is the inclination, t is time, v0 is the initial velocity and
z0, is the initial height.

5.1.2 Resulting forces

The helix is an easy shape in terms of the resulting forces as it is symmetric
circularly. Firstly, there's obviously gravity, which produces the downwards accel-
eration. The centripetal force required to stay in the circular motion is produced
by the component of the normal force which is perpendicular to the track. This
normal force is also responsible for avoiding a free fall. As the weight doesn't
fully cancel out, there is a small acceleration applied which means that the ve-
locity increases while the object loses height (which respects the conservation of
mechanical energy principle).

To reduce the strain on the track, helices tend to tilt inward to reduce the
horizontal forces presented to the track by canceling them out with the normal
force.

The centripetal acceleration depends on the velocity by the expression:

ac =
v2

r

This means that, as the velocity is increasing along the helix, the vehicle gains
centripetal acceleration, which implies that the centripetal force increases propor-
tionally. This increase in the normal force is perceptible to the rider, as it may
feel like the vehicle is launched away.

In this formula, we can also see that the radius of the helix is also involved.
The wider the helix, the less force ends up being exerted on the vehicle.

5.1.3 Animation

The animation was produced using the formula above. Here are three snapshots
of the animation seen form the side at the frames speci�ed. Note that we can see
a increase in speed between the second and third images with respect to the �rst
and second image even though the distance in frames is the same.

Page 47

Mathematical models in Roller Coasters

(a) Frame 50 (b) Frame 150 (c) Frame 250

Figure 15: Sideview of the animated Helix (using Blender 3D)

The code for the animation can be found Appendix III - Helix section.
The link to the animation on YouTube is as follows:

Page 48

5 Parameterized Elements

5.2 In-line Twist

In an in-line twist, the track rotates around a central horizontal axis. This axis is
usually located inside the track but can also be placed at the center of the riders'
bodies, resulting in a heartline roll.

−5 0 5 10
15

20
25

30

−4

−2

0

2

4

Figure 16: Graphical representation of an In-line Twist

Figure 17: In-line Twist of the Furius Baco coaster, Port Aventura

Source: By PCG44 - Own work, CC BY-SA 4.0

5.2.1 Equation

The basic formula for the in-line twist is quite similar to the one from the helix.
Here, we can see that the variables y and z are swapped, so the vehicle won't
always be moving parallel to gravity.

Page 49

Mathematical models in Roller Coasters

r⃗(t) =

x(t) = R · cos(θ)
y(t) = k · θ
z(t) = R · sin(θ)

x, y and z represent position in all three axes, the variable R represents the
radius of the helix and θ represents the angle traversed along the helix.

As we are going to use the unitary vector method, I'm going to analytically
calculate the �rst and second derivative of the function above:

r⃗′(t) =

x′(t) = −R · sin(θ)
y′(t) = k
z′(t) = R · cos(θ)

r⃗′′(t) =

x′′(t) = −R · cos(θ)
y′′(t) = 0
z′′(t) = −R · sin(θ)

Firstly, we are going to �nd the total acceleration. As a⃗ is also the second time
derivative of r⃗(θ), By using the chain rule, we know that a⃗ = r⃗′′(θ) · θ̇2 + r⃗′(θ) · θ̈.

We also know that the vectors for r⃗′ and r⃗′′ are orthogonal, which we know
because, by the Pythagorean theorem, the modulus of r′(θ) is:√

R2 · sin2(θ) + k2 +R2 · cos2(θ) =
√
R2 + k2

We know that both R and k are constants. Therefore the object doesn't in-
crease the modulus of its derivative. As the object changes direction, it must have
some acceleration which has to be at a right angle from the velocity. This means
that we can a�rm that cos(σ) = 0. Consequently, (r⃗′′(θ) · r⃗′(θ)) = 0, which is
proven using the dot product between two vectors:

r⃗′′(θ) · r⃗′(θ) = ∥r⃗′′∥ · ∥r⃗′∥ · cos(σ) = 0

Now we can use this formula to simplify the expression for the chain rule by
multiplying it by r⃗′(θ).

a⃗ · r⃗′(θ) = r⃗′′(θ) · r⃗′(θ) · θ̇2(t)︸ ︷︷ ︸
0

+ r⃗′(θ)2 · θ̈(t)

This becomes:

(⃗a · r⃗′(θ)) = r⃗′2(θ) · θ̈(t)

Now, we are going to �nd another expression that will help us in solving this
equation. We know that

(g⃗ · r⃗′(θ)) = (0, 0, g) · (−R sin(θ), k, R cos(θ)) = g ·R · cos(θ)

Page 50

5 Parameterized Elements

As we know that the total acceleration produced in the tangential direction
is the same as the projection of gravity over that tangent. Therefore, a⃗ · r⃗′(θ) =
g⃗ · r⃗′(θ). If we use this with the formulas we have obtained until now, we get the
equality:

r⃗′2(θ) · θ̈(t) = g ·R · cos(θ)
Using the Pythagorean theorem, we know that r⃗′2(θ) = R2 + k2, this results in

the following second-order di�erential equation:

θ̈ =
g ·R · cos(θ)
R2 + k2

To solve this equation, we can apply Euler's method for the angle of rotation
θ. Then we can �nally add the initial vector for position, which will now return a
position at a certain moment in time.

r⃗ =

θ =

θ̈n =

g ·R · cos(θn)
R2 · k2

θ̇n+1 = θ̈n ·∆t+ θ̇n
θn+1 = θ̇n ·∆t+ θn

rx −→ xn+1 = R · cos(θn)
ry −→ yn+1 = k · θn
rz −→ zn+1 = R · sin(θn)

5.2.2 Resulting forces

Before entering the in-line twist, the object is completely vertical, which means
that the weight and the normal force cancel out. Then, as the object starts the
in-line twist, the normal force (which is always perpendicular to the track) gains
a horizontal component and the object and the weight doesn't get canceled out,
which means that the object's center of mass slowly starts to lose height, which
gets transformed into velocity.

As it starts going around the twist, the vehicle gains acceleration until it has
gone a quarter of the rotation. At that point, the weight and the normal force are
completely perpendicular. Then, the acceleration starts to decrease, although the
velocity is still increasing.

At the bottom of the twist, the centripetal acceleration equals to zero and
changes sign, which means that the velocity starts to decrease.

While the object is going up, the vehicle is slowed down due to the gravitational
pull, until it's standing vertically again. During this ascend, the acceleration also
increases and decreases due to the change in the angle formed with the normal
force.

Page 51

Mathematical models in Roller Coasters

When the vehicle is back up, it has returned to its initial speed. This is because
all forces are conservative, and the mechanical energy of the vehicle is constant.

The formula for the mechanical energy∆EM = 0, which means that the amount
of energy cannot vary, only it's function (potential or kinetic).

5.2.3 Animation

(a) X-Axis (b) Y-Axis (c) Z-Axis

Figure 18: Three di�erent views of the animated In-line Twist (using Blender 3D)
at the frame 900

The code for the animation can be found Appendix III - In-line Twist section.
The link to the animation on YouTube is as follows:

Page 52

5 Parameterized Elements

5.3 Vertical Loop (Clothoid)

These are the most common and popular type of inversions. They used to be
manufactured in a circular shape, but they currently use an inverted teardrop
shaped to reduce the resulting forces during the change in direction. There are
several shapes that can produce the necessary damping, according to the objective.
There are two properties that can be dampened: the centripetal acceleration and
the G-forces.

A curve with a constant centripetal acceleration has the following set of dis-
cretized equations [2]:

r⃗ =

θn+1 = θn +

Cv20
g

− 2 · yn
 ·∆s

xn+1 = xn + cos(θn) ·∆s
xn+1 = xn + cos(θn) ·∆s

However, there is still a strong change of the forces at the beginning and at
the end of the loop. This is where clothoids appear. Clothoids are usually used to
connect two circular objects in a smooth trajectory. In a clothoid, the curvature
changes proportionally to the length. A full clothoid is as follows:

Figure 19: Vertical Loop of the Blue Fire Megacoaster, Europa Park

Source: By , CC BY-SA 3.0 (2022)

5.3.1 Equation

We can use a piece-wise function to de�ne a loop as two opposite clothoids, with
a semicircle between them.

Firstly, we will analyze the clothoid curve. In a clothoid, the radius of cur-
vature is indirectly proportional to the arc traversed (s · R = k). These are used
because they minimize the forces that are applied. The formula for the clothoid
curve is written using the Fresnel Integrals:

Page 53

Mathematical models in Roller Coasters

r⃗(θ) =

C(θ) =

θ∫
0

cosλ2 dλ

S(θ) =

θ∫
0

sinλ2 dλ

This integral cannot be derivated directly as the variable of integration is one
of the limits, so we need to use Leibniz's integration rule, which states that:

d

dx

(∫ b(x)

a(x)

f(x, λ) dλ

)
= f(x, b(x)) · d

dx
b(x)

−f(x, a(x)) · d

dx
a(x)

+

∫ b(x)

a(x)

∂

∂x
f(x, λ) dλ

Substituting results in the following:

d

dx

(∫ θ

0

cos(λ2) dλ

)
= cos(θ2) ·

�
�
��7
1

d

dx
θ

−
���������:0
cos(02) · d

dx
a(x)

+
�����������:0∫ b(x)

a(x)

∂

∂x
cos(θ2) dλ

Doing the same with the vertical axis, we now know that the derivative of the
clothoid function is:

r′(θ) =

{
C ′(θ) = cos(θ2)
S ′(θ) = sin(θ2)

This can be derivated again easily by using substitution:

r′′(θ) =

{
C ′′(θ) = −2 · θ · sin(θ2)
S ′′(θ) = 2 · θ · cos(θ2)

Firstly, we are going to �nd the total acceleration. To do this, we know that
a⃗ = r̈(θ). We can use the chain rule to transform this equality into the following:

ṙ(θ) = r⃗′(θ) · θ̇(t)

Now we use the product rule to derivate again with respect to time:

Page 54

5 Parameterized Elements

a⃗ = r⃗′′(θ) · θ̇2(t) + r⃗′(θ) · θ̈(t)

In the initial formula, C(θ) and S(θ) are the corresponding horizontal and
vertical positions, which use the abstract parameter θ as a value at each point.

We also know that the vectors for r⃗′ and r⃗′′ are orthogonal because the modulus
of r⃗′ is constant, which means that cos(σ) = 0 and consequently, (r⃗′′(θ) · r⃗′(θ)) = 0.
This is proven using the scalar product between two vectors:

r⃗′′(θ) · r⃗′(θ) = ∥r⃗′′∥ · ∥r⃗′∥ ·����:0
cos 90 = 0

If we multiply the formula for a⃗ by r⃗(θ) and using the property that we just
described, we then get:

a⃗ · r⃗′(θ) = r⃗′′(θ) · r⃗′(θ) · θ̇2(t)︸ ︷︷ ︸
0

+ r⃗′(θ)2 · θ̈(t)

(⃗a · r⃗′(θ)) = r⃗′2(θ) · θ̈(t)

If we project the gravitational vector g⃗ over r⃗′(θ), we get the expression for:

(g⃗ · r⃗′(θ)) = (0, g) · (cos(θ2), sin(θ2)) = g · sin(θ2)

As we know that the total acceleration produced in the tangential direction
is the same as the projection of gravity over that tangent. Therefore, a⃗ · r⃗′(θ) =
g⃗ · r⃗′(θ). If we use this with the formulas we have obtained until now, we get the
equality:

θ̈(t) · r⃗′2(θ) = g · sin(θ2)

As we know that r⃗′2(θ) = sin2(θ2) + cos2(θ2) = 1, this results in the following
second-order di�erential equation:

θ̈ = g · sin(θ)

We can now solve this di�erential equation numerically by applying Euler's
method for the parameter θ.

θ =

θ̈n = g · sin(θ2n)
θ̇n+1 = θ̈n ·∆t+ θ̇n
θn+1 = θ̇n ·∆t+ θn

Page 55

Mathematical models in Roller Coasters

Now we can use this in our original equation to �nd the position with respect
to time, but because the purpose of this is to animate the movement with Python,
we have to avoid using integrals12.

r⃗ =

θ =

θ̈n = g · sin(θ2n)
θ̇n+1 = θ̈n ·∆t+ θ̇n
θn+1 = θ̇n ·∆t+ θn

rx =

{
ẋn+1 = cos(θ2n)
xn+1 = ẋn ·∆t+ xn

ry =

{
ẏn+1 = sin(θ2n)
yn+1 = ẏn ·∆t+ yn

5.3.2 Resulting forces

At the beginning of the loop, we have a change of forces and direction of movement.
There can be no completely circular loops, as the forces needed for these changes
would be too strong. The G-forces are going to allow us to analyze the vertical
loop.

The G forces compare the net force with the gravitational acceleration:

G =
F

m · g
As a reference, most people can only take 6G for a second. Here is a chart in

which we can see how long a roller coaster can apply a certain G-force according
to the roller coaster safety regulations.

Figure 20: ASTM standards for G-force

Source: Research Gate

12 ↱It is probably possible to use integrals in Python, but I'm going to avoid it because it is

not necessary and may be even more complicated than using Euler's method again.

Page 56

5 Parameterized Elements

The use of the clothoid shape allows for a gradual change in the balance between
the weight and the normal force to avoid all these extreme changes in the G-forces.
Thanks to the math involved in the creation of roller coasters, the number of
accidents and injuries decreases, which makes for more thrilling and safe rides.

When the vehicle arrives to the circular section, the normal force becomes
perpendicular to the weight, which means that the acceleration is equal to the
force of gravity. At the highest point of the loop, the direction of movement and
the gravitational pull have the same direction, so the vehicle starts accelerating
again. Since the normal force ends up aligning with the weight again at the end of
the loop, we can see that the acceleration decreases. Thus, we have the maximum
acceleration at the sides of the loop.

5.3.3 Animation

This animation ended up being the worst one, because, as the static motion is
de�ned by a set of integrals, the shift in Euler's method is clearly perceptible.
The code for the animation can be found Appendix III - Vertical Loop section.
The link to the animation on YouTube is as follows:

Page 57

Mathematical models in Roller Coasters

Page 58

5 Parameterized Elements

5.4 Corkscrew

A corkscrew is a type of inversion that resembles a vertical loop that has been
stretched so that the entrance and exit points are a certain distance away from
each other. In most roller coasters, the direction in which the corkscrew is entered
is parallel to the direction in which the corkscrew is exited. At the moment of
inversion, the riders produce a 90-degree angle from the incoming and exiting
tracks when seen from above.

Figure 21: Matterhorn Blitz roller coaster at Europa Park, Germany

Source: By Coasterman1234 at en.wikipedia, CC BY-SA 3.0

5.4.1 Equation

Now that we have the in-line twist and the vertical loop, we can combine them
to form the corkscrew, which I will divide into three segments: the clothoid used
to enter, the middle circular section and the clothoid used to exit the corkscrew.
Notice that we are also adding a third axis to avoid any type of overlapping that
could be produced, as the shape would be impossible otherwise. This is the only
�gure in which we are actually going to use algebraic and geometric properties to
work out the solution to the formula, as we need to know the position at which
the curve changes. This could also be done analytically using python, but the
explanation would be the same, only the numbers could be scaled proportionally.
This is also the reason why I am going to make a lot of assumptions in this element.

Firstly, the corkscrew starts with a clothoid shape to accommodate for the
change in the radius of curvature. We know that the clothoid section ends once
the corkscrew has a perfectly vertical slope, which is a point that we can calculate.
Then, the twist section starts, so we need to match the curvature of both sections
to �t with each other. To do this, we can take advantage of the circle's constant

Page 59

Mathematical models in Roller Coasters

curvature and the clothoids curvature, which is directly proportional to the arc
length. As we have calculated before, the formula for the parameter in the solved
clothoid shape is:

r⃗ =

 θ =

θ̈n = g · sin(θ2n)
θ̇n+1 = θ̈n ·∆t+ θ̇n
θn+1 = θ̇n ·∆t+ θn

To be able to transition smoothly into the next section, we are going to use
the variation of the parameter θ to advance in the y-axis. This makes for a more
realistic link between the two di�erent shapes.

To connect the clothoid with the following section, we are going to have to
calculate the point at which the clothoid ends and the circle starts. We can do
this easily, because we know that the derivative of the horizontal component of
the clothoid at that point is 0. Thus, we get the following equation:

cos(θ2) = 0

Solving this trigonometric equation gives us an unlimited number of solutions,
but we'll keep the one that's closest to zero and is positive, as that will be the �rst
time that the clothoid changes direction on the horizontal axis.

θ =
√
arccos(0) =

√
π

2

As we now know the arc length, we can now calculate the point at which the
curve changes. We're going to call this point P1.

P1 = r⃗

(√
π

2

)
=

x

(√
π

2

)
=

√
π
2∫

0

cosλ2 dλ

y = 0

z

(√
π

2

)
=

√
π
2∫

0

sinλ2 dλ

This result can be scaled up or down, depending on how we want to draw the
clothoid. At this point, the type of curve changes from a clothoid to a horizontal
spiral. When programming, we are going to gain precision by simply shifting the
result that we obtain from the twist.

The de�nition of clothoid also states that the radius of curvature (R) is inversely
proportional to the arc length (θ) with respect to a constant of curvature. Then,
the formula for the radius of curvature at the point of horizontal in�ection is:

Page 60

5 Parameterized Elements

R =
c2

θ
=

c2√
π

2

= c2 ·
√

2

π

The middle section of the corkscrew consists of a series of perfectly circular
loops that advance in the horizontal direction. Much like he in-line twist, these
can be described using three coordinates, but now we can't choose the coordinate
(0, 0, 0) as a starting point. We solve this by shifting the whole function by a
known constant value. As we considered for the clothoid to be completely vertical,
we know that θ = 0 (we know this because the twist sections starts from the sides
and goes upwards). We have just calculated the starting point for the other two
values, so now we would have to make sure that r⃗(θ0) = P1.

This middle section can be de�ned using the equation for the in-line twist:

r⃗(θ) =

x(θ) = R · cos(θ)
y(θ) = k · θ
z(θ) = R · sin(θ)

As all energy is conserved, the number of loops is irrelevant, as the vehicle will
travel through them at the same intervals and speed (thus conserving the mechan-
ical energy). Therefore, I will only consider one and a half rotations through the
loop and I'm going to calculate where that point is.

The angle at which the inline twist ends can be calculated, as we know that
it depends on the number of rotations we want to complete, but it always has to
be in the shape of: θ = n · 2π + π, where n ∈ N is the number of rotations. The
half rotation at the end is to ensure that the vehicle starts towards the correct
direction. If we substitute this in our equation fo the in-line twist, we can obtain
the �nal position of this section, which we'll consider to be the initial position for
the last section of the corkscrew.

Finally, we would need another clothoid going downwards to complete the
corkscrew. This last clothoid reduces its curvature until the vehicle is �at again.
To do this, we are going to need to inverse Euler's method. Instead of adding the
corresponding slope each time, we are going to subtract it, as the second derivative
depends only on the position.

We know that the vertex for this last clothoid is symmetrical to the beginning
of the corkscrew with respect to the center of the twist, which is also equal to the
position at which the �rst two sections of the corkscrew connect minus the radius
of curvature. This is also the point at which the object crosses the horizontal plane
again.

To add the inclination in this last clothoid, we are going to use a separate
method: we can use the same formula used in the �rst section, but storing the

Page 61

Mathematical models in Roller Coasters

frames in the inverse order. To do this, we need a way to know how long we have
to calculate this for. We can do this easily by storing the number of frames in
another variable and using this as a countdown.

5.4.2 Resulting forces

The resulting forces depend on the position of the wagon at a certain moment in
time. As the vehicle is constantly in a circular motion (with changing radius),
most of the forces that end up on the rider are constantly changing direction.

At the beginning of the corkscrew, while the object is still �at on the ground,
the normal force gets canceled out with the gravitational force. Then, as the object
starts the curvature, the centripetal force appears as the sum of all unbalanced
forces that make the change in direction happen. The gravitational force is always
pulling the object down, while the normal force is pointing inwards, allowing for
the object to change direction.

5.4.3 Animation

The code for the animation can be found Appendix III - Corkscrew section.
The link to the animation on YouTube is as follows:

Page 62

6 Animations

6 Animations

The purpose of �nding the formulas was to be able to create an animation of each
of the roller coaster elements by building a simulation that numerically solves the
di�erential equation. The complete animation, with all the elements included, can
be found under the following link:

Following the formulas, these animations have been programmed to accurately
respect speed and acceleration, even if it means that the object may slightly shift
away from its path. In these cases, the shift is gradual, increasing linearly over
time. This is mainly due to the expected loss of accuracy of the discretized form
of the equations, as they are calculated in small increments. Animations get more
accurate the smaller the increments are, but a balance between accuracy and the
time needed to generate and render the �gures is also important.

All the animations have been made using Blender 3D, version 2.90, which can
be found here: https://www.blender.org/

Blender is an open-source app designed to create 3D �gures and animations,
but it can also be used to manipulate images and videos or even program games.
Although the graphical user interface is probably its main strength, I have instead
opted for creating the animations with Python, which is integrated in Blender, as
using this programming language allows to precisely repeat the render as many
times as needed.

To be able to input the formulas into Blender, instead of manually programming
each frame of the animation I have used the Python API console, which is already
integrated into Blender and allows to code a scene using the Python language. The
main library used to program Blender using Python is the bpy package, which is
speci�c to Blender and contains a lot of custom commands that can't be used in
Python anywhere else. I have also used the standard Python math library to be
able to input more complex formulas such as the trigonometric or hyperbolic ones.

The process of coding the animation is divided into two phases: initializing the
editor and objects and coding the actual movement and e�ects. I must say that
surprisingly the �rst part of the process is noticeably longer than the second part.

In the �rst section of the code, the meshes (which are the representation of an
objects with physical properties using a set of �nite elements) are generated and the
colors and shadings are set. Most of these lines start with the bpy command, from
the package of the same name, as these settings are speci�c to the blender engine
and cannot be found on the standard Python libraries. This package has pre-
programed structures to be able to manipulate the objects, materials, animations,
and e�ects easily. However, the code is only replicating what a person would do
in the user interface, so it still has limitations when manipulating several objects.
Therefore, at the beginning of the code, I have added two commands that delete

Page 63

https://www.blender.org/

Mathematical models in Roller Coasters

every object in the scene, so I can add the correct ones again with the properties,
position, and e�ects I want them to have.

The second section of the code expresses the actual formulas and sets the
way that the objects must move and behave. Using a for-loop, each frame of
the animation is stored after having obtained the needed calculations. For some
�gures, this isn't precise enough, so the program does thousands of calculations
at smaller incremental intervals which don't get stored into frames. Storing and
animating all these calculations between frames would also increase the size of the
video and the frames per second. It would be ideal to be able to perform the
calculations at di�erential intervals, but that is physically impossible although I
try to get close. This increase in the number of calculations largely a�ects the
speed in which the program executes. Because of this, all formulas are calculated
when the code is executed, not when the animation is rendered.

Finally, the last part of the code resets the editor to its default values which
may have been altered in the code execution, and also applying some additional
changes in the settings, for example the number of frames per second is adjusted
and the animation is reset to start at the �rst frame.

To be able to use Euler's method, I de�ne all variables twice, for n and for
n + 1 by naming them x0 and x1 respectively. Then, I de�ne the step size ∆t
using the variable t and setting it to a very small number. I also use this variable
to convert from seconds to frames by using the frames per second (fps) and the
number of steps in between frames (seen in the second for-loop and de�ned using
the variable j). This is done by setting the step size as t = 1 / (fps * j).

Figure 22: Capture of Blender

Page 64

7 Data Collection from Real Roller Coasters

7 Data Collection from Real Roller Coasters

To complement this research project, I wanted to add section closer to real roller
coasters. Thus, I have collected data from di�erent roller coasters around Europe.
Three roller coasters have been chosen and their elements have been analyzed. For
each roller coaster, a chart has been built from the recording of the acceleration
measurements of the coaster, while riding it using the Arduino Science Journal

app. The recorded variables are:

� The acceleration in the x-axis

� The acceleration in the y-axis

� The acceleration in the z-axis

� A compass (used for referencing between the x and y axis).

The chart has been broken down in sections, each one of them corresponding
to each of the elements of the coaster. The listing of the elements of the ride is
shown after the chart, enumerating in the correct order which elements compose
the coaster.

Also, a link to the POV13 for each of the roller coaster included in this chapter
has been added to the Bibliography. This enables the reader to be able to view by
himself the elements of each roller coaster, as the video travels along them. The
elements of each of the roller coasters are enumerated in its corresponding section,
so it should be easy to follow along.

See Appendix II for more information on some of the most important roller
coasters in Europe, some of which are further explained here.

Once the data is analyzed, the results are the di�erent accelerations with re-
spect to time. With this information, we can �gure out the velocity, and conse-
quently the position, at each moment (adding the initial conditions as the constants
of integration). As we compare the data with the theory explained in the previous
sections, we can see that the information is slightly o�, and the values always
tend to lower, as the force of friction must be included, and therefore, there is no
conservation of energy. Despite this, the loss of energy due to friction is relatively
small, so I'm not going to consider it when analyzing the data.

By using Euler's method on the numerical data, we can �gure out the velocity
at each moment, and therefore the position. For this, we can identify in the chart
when the coaster is in the station and set the velocity and position at that point
as 0.

13 ↱A POV is short for �Point of View�, and it is the video of a ride from the rider's perspective.

Page 65

Mathematical models in Roller Coasters

7.1 Silver Star

Here is a picture of the accelerations measured on a real coaster (Silver Star Hy-
percoaster in Europa-Park, Rust, Germany). This roller coaster consists of a series
of camelbacks, ended by a small one-turn helix.

Figure 23: Acceleration of the Silver Star (01.09.2022)

A Station B Curve + Chain lift C First drop D Camelback 1 + Curve E Camelback

2 F Camelback 3 + 180º CurveG Camelback 4H Camelback 5 + Security zone I Curve

+ Small drop J Camelback 6 K Double curve + Deceleration zone L Curve + Waiting

zone M Station

Figure 24: Picture of the whole Silver Star

Page 66

7 Data Collection from Real Roller Coasters

7.2 Python

The following charts corresponds to the Python roller coaster in Efteling, Nether-
lands (do not confuse with the Python language which has been mentioned previ-
ously). This roller coaster has an initial lift hill, followed by two vertical loops and
two corkscrews. At the end, right before getting to the station, there is a small
helix.

Figure 25: Acceleration of the Python (24.08.2022)

A Station B Chain lift C Small drop + Curve D Main drop E Loop 1 F Loop 2 G

Curve + Double corkscrew H Helix I Deceleration zone J Station

Figure 26: Picture of the Python

Page 67

Mathematical models in Roller Coasters

7.3 Baron 1898

The following charts are the capture of the acceleractions measured in the Baron
1898 roller coaster in Efteling, Netherlands. This is a small roller coaster, but at
the same time it has several of the elements that have been analyzed in this report,
including a loop, an in-line twist and a helix.

Figure 27: Acceleration of the Baron 1898 (24.08.2022)

A Station B Chain lift + Stop C Main drop D Loop E In-line Twist in a small

camelback F Helix G Small camelback H CurveI Deceleration zone J Station

Figure 28: Picture of the Baron 1898

Page 68

8 Conclusions

8 Conclusions

This report shows the mathematical work needed to build the animations of the
most common roller coaster elements.

Even though a lot of simpli�cations and assumptions have been made, the
mathematical formulas obtained are more complex than I had initially thought,
considering that in the end they simply calculate what happens to an object along
a known path given the total forces applied. I can't imagine the struggle that would
be doing this same project but considering for example the force of friction and
the wind drag. At several points in the making of this project I tried simplifying
even further or making speci�c assumptions which made the problems look easier,
but even that resulted sometimes in a challenge.

Throughout the project, I have tried to �nd the elements that could most likely
be solved in an analytical way, but all the formulas quickly turned into elaborate
di�erential equations. However, I was able to solve all these equations by using a
wide range of methods.

At some points, I had to explore di�erent paths to mathematically try and
solve the di�erential equations, and I found it strange that each shape presented a
speci�c and complex problem that some of the other shapes didn't have. To help
me solve each problem, I used complementary tools like Geogebra or WolframAlpha
to check the formulas visually.

Figure 29: Capture of GeoGebra drawing di�erent curves related to the clothoid

Page 69

Mathematical models in Roller Coasters

Finally, to review speci�cally the elements that this report covers:

� Curve: The curve was an easy element as the forces got neglected with each
other.

� Camelback (Parabola): The camelback was a �rst challenge as I had to
learn how to solve di�erential equations by using Euler's method.

� Catenary: This element was quite easy to solve, as it was similar to the
parabola.

� Helix: This was the �rst element I solved. Luckily, the di�erential equation
ended up being the easiest one.

� In-line twist: This element was surprisingly similar to the vertical loop, so
I ended up solving it �rst.

� Vertical Loop: When starting this element, I thought that having a pa-
rameter wouldn't complicate the resolution, but I was wrong. I ended up
using a whole di�erent approach than I had imagined to solve it.

� Corkscrew: Once I had the animation for the in-line twist and the vertical
loop, I just had to add them together. Finding the points of intersection and
the curvature there wasn't di�cult, as I already knew some conditions about
those points.

As I had already used Blender before, I was already familiar with the way
it worked, but I hadn't experimented with the integrated Python console yet.
Translating and �nding each command was the hardest part about using python
to reproduce certain animations.

I didn't think that it would take me so much time to complete this project, but
it has really broadened by vision towards mathematics and the di�erent branches of
it, especially in di�erential calculus. I have actually learned a lot about geometrical
analysis and the way that derivatives and integrals are used and solved in a certain
situation.

Beyond the mathematical aspects, I have been able to use and apply new tools
and knowledge that I am sure will help me in other areas of my career: using
LATEXand TeXstudio to build the document, using Python for programming or
storing the document versions and the project website in GitHub. I had already
been using Blender before starting this project, but I had never used the Python
interface which is something I also had to learn.

In conclusion, this project has been a hard but pleasant journey to applying
math to roller coasters. Journeys like mine have allowed engineers to improve the

Page 70

8 Conclusions

experience and safety of roller coasters. Thanks to math nowadays riders don't
faint or die! I hope my work to be a small contribution that may help others reach
further in this amazing �eld.

Overall, I'd like to end stating that I really have enjoyed working on this project.

Page 71

Mathematical models in Roller Coasters

Page 72

9 Bibliography and References

9 Bibliography and References

Books and Articles

[3] Nick Weisenberger. Coasters 101: An Engineer's Guide to Roller Coaster
Design. 3rd ed. 2012.

[4] Raph Levien. �The Euler spiral: a mathematical history�. In: (2008). url:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-

111.html.

[5] Dourmashkin Kleppner and Ramsey.Quick Calculus: A Self-Teaching Guide.

[6] Olivia Briggs. �Roller Coaster Acceleration�. In: (2021). url: https://vc.
bridgew.edu/honors_proj/459.

Math Forums

[7] Mathematics stackexchange. url: https://math.stackexchange.com.

[8] Mathover�ow. url: https://mathoverflow.net.

Math Forums Questions

[9] Lutz Lehman (answer) (question). Doubts on the solution of a
di�erential equation. url: https://math.stackexchange.com/questions/
4597447/doubts-on-the-solution-of-a-differential-equation.

[18] Michael Seifert (answer) Archimedes (question). Solving a second-order and
second-degree di�erential equation. 2018. url: https://math.stackexchange.
com/questions/2378818/how-to-solve-a-second-order-and-second-

degree-differential-equation.

[19] Jake (answer) skvery (question). Can PGF plot the integral of any speci-
�ed function? 2013. url: https://tex.stackexchange.com/questions/
103569/can-pgf-plot-the-integral-of-any-specified-function.

Videos

[2] Art of Engineering. The Real Physics of Roller Coaster Loops. 2019. url:
https://youtu.be/4q2W5SJc5j4.

[34] MasterWuMathematics. Integrating the Fresnel integrals. 2014. url: https:
//youtu.be/fR4yd6pB5co.

Page 73

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-111.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-111.html
https://vc.bridgew.edu/honors_proj/459
https://vc.bridgew.edu/honors_proj/459
https://math.stackexchange.com
https://mathoverflow.net
https://math.stackexchange.com/questions/4597447/doubts-on-the-solution-of-a-differential-equation
https://math.stackexchange.com/questions/4597447/doubts-on-the-solution-of-a-differential-equation
https://math.stackexchange.com/questions/2378818/how-to-solve-a-second-order-and-second-degree-differential-equation
https://math.stackexchange.com/questions/2378818/how-to-solve-a-second-order-and-second-degree-differential-equation
https://math.stackexchange.com/questions/2378818/how-to-solve-a-second-order-and-second-degree-differential-equation
https://tex.stackexchange.com/questions/103569/can-pgf-plot-the-integral-of-any-specified-function
https://tex.stackexchange.com/questions/103569/can-pgf-plot-the-integral-of-any-specified-function
https://youtu.be/4q2W5SJc5j4
https://youtu.be/fR4yd6pB5co
https://youtu.be/fR4yd6pB5co

Mathematical models in Roller Coasters

[35] Matt Anderson. Professor Matt Anderson's YouTube Channel. url: https:
//www.youtube.com/@yoprofmatt.

[36] Silver Star POV On-Ride. url: https://www.youtube.com/watch?v=
fFmuCmku4Z0.

[37] Python POV On-Ride. url: https://www.youtube.com/watch?v=j74EvfW2QiU.

[38] Baron 1898 POV On-Ride. url: https://www.youtube.com/watch?v=
dCGkm_LpRGM.

Internet References

[1] Nancy Hall. Newton's Laws of Motion. url: https://www1.grc.nasa.gov/
beginners-guide-to-aeronautics/newtons-laws-of-motion/.

[10] Outline of Calculus, Wikipedia (disambiguation). url: https://en.wikipedia.
org/wiki/Outline_of_calculus.

[11] Paul Dawkins. Parametric Equations And Curves. 2022. url: https://
tutorial.math.lamar.edu/classes/calcii/parametriceqn.aspx.

[12] CoasterPedia.net. 2009. url: https://coasterpedia.net/wiki/.

[13] Roller Coaster element. 2022. url: https://en.wikipedia.org/wiki/
Roller_coaster_element.

[14] Geogebra. url: https://www.geogebra.org/.

[15] Roller Coaster Data Base. url: https://www.rcdb.com/.

[16] WolframAlpha. url: https://www.wolframalpha.com/.

[17] Second Order Di�erential Equations. 2021. url: https://www.mathsisfun.
com/calculus/differential-equations-second-order.html.

[20] OverLeaf Documentation LaTeX. url: https://www.overleaf.com/learn.

[21] Erik Neumann. Classifying Di�erential Equations. 2004. url: https://www.
myphysicslab.com/explain/classify-diff-eq-en.html.

[22] Mathematics of Circular Motion. 1996. url: https://www.physicsclassroom.
com/class/circles/Lesson-1/Mathematics-of-Circular-Motion.

[23] Wikipedia. Conservation of Energy Principle. url: https://en.wikipedia.
org/wiki/Conservation_of_energy.

[24] Energy. url: https://www.physicsclassroom.com/class/energy.

[25] Wikipedia. Euler's method. url: https : / / en . wikipedia . org / wiki /
Euler_method.

Page 74

https://www.youtube.com/@yoprofmatt
https://www.youtube.com/@yoprofmatt
https://www.youtube.com/watch?v=fFmuCmku4Z0
https://www.youtube.com/watch?v=fFmuCmku4Z0
https://www.youtube.com/watch?v=j74EvfW2QiU
https://www.youtube.com/watch?v=dCGkm_LpRGM
https://www.youtube.com/watch?v=dCGkm_LpRGM
https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/newtons-laws-of-motion/
https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/newtons-laws-of-motion/
https://en.wikipedia.org/wiki/Outline_of_calculus
https://en.wikipedia.org/wiki/Outline_of_calculus
https://tutorial.math.lamar.edu/classes/calcii/parametriceqn.aspx
https://tutorial.math.lamar.edu/classes/calcii/parametriceqn.aspx
https://coasterpedia.net/wiki/
https://en.wikipedia.org/wiki/Roller_coaster_element
https://en.wikipedia.org/wiki/Roller_coaster_element
https://www.geogebra.org/
https://www.rcdb.com/
https://www.wolframalpha.com/
https://www.mathsisfun.com/calculus/differential-equations-second-order.html
https://www.mathsisfun.com/calculus/differential-equations-second-order.html
https://www.overleaf.com/learn
https://www.myphysicslab.com/explain/classify-diff-eq-en.html
https://www.myphysicslab.com/explain/classify-diff-eq-en.html
https://www.physicsclassroom.com/class/circles/Lesson-1/Mathematics-of-Circular-Motion
https://www.physicsclassroom.com/class/circles/Lesson-1/Mathematics-of-Circular-Motion
https://en.wikipedia.org/wiki/Conservation_of_energy
https://en.wikipedia.org/wiki/Conservation_of_energy
https://www.physicsclassroom.com/class/energy
https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Euler_method

INTERNET REFERENCES

[26] Alejandro Blumentals. Computing Clothoid Curves in �ve lines of Python.
2019. url: https://medium.com/@alejandro.blumentals/computing-
clothoid-curves-in-five-lines-of-python-3ea762debaa1.

[27] Nick Berry.Why Roller Coaster Loops Are Never Circular. 2014. url: https:
//gizmodo.com/why- roller- coaster- loops- are- never- circular-

1549063718.

[28] Alicia Cypress. A brief history of the roller coaster. 1997. url: https://
www.washingtonpost.com/archive/1997/08/13/a-brief-history-of-

the-roller-coaster/4490a0f9-6a82-451d-86b7-f36a7bc0fbbf/.

[29] Roller Coaster Loop Shape. url: http://physics.gu.se/LISEBERG/eng/
loop_pe.html.

[30] Europa Park. url: https//www.europapark.de/en/park.

[31] Efteling. Efteling. 2015. url: https://www.efteling.com/en.

[32] PortAventura. PortAventura. url: https://www.portaventuraworld.com/
ca.

[33] Tibidabo. Tibidabo. url: https://www.tibidabo.cat/ca.

Page 75

https://medium.com/@alejandro.blumentals/computing-clothoid-curves-in-five-lines-of-python-3ea762debaa1
https://medium.com/@alejandro.blumentals/computing-clothoid-curves-in-five-lines-of-python-3ea762debaa1
https://gizmodo.com/why-roller-coaster-loops-are-never-circular-1549063718
https://gizmodo.com/why-roller-coaster-loops-are-never-circular-1549063718
https://gizmodo.com/why-roller-coaster-loops-are-never-circular-1549063718
https://www.washingtonpost.com/archive/1997/08/13/a-brief-history-of-the-roller-coaster/4490a0f9-6a82-451d-86b7-f36a7bc0fbbf/
https://www.washingtonpost.com/archive/1997/08/13/a-brief-history-of-the-roller-coaster/4490a0f9-6a82-451d-86b7-f36a7bc0fbbf/
https://www.washingtonpost.com/archive/1997/08/13/a-brief-history-of-the-roller-coaster/4490a0f9-6a82-451d-86b7-f36a7bc0fbbf/
http://physics.gu.se/LISEBERG/eng/loop_pe.html
http://physics.gu.se/LISEBERG/eng/loop_pe.html
https//www.europapark.de/en/park
https://www.efteling.com/en
https://www.portaventuraworld.com/ca
https://www.portaventuraworld.com/ca
https://www.tibidabo.cat/ca

Mathematical models in Roller Coasters

Page 76

10 Appendix I - How this document was made

10 Appendix I - How this document was made

This document has been formatted with LATEXusing TeXstudio, including all for-
mulas and charts. The LATEXformat is considered the "standard" for any math-
related document. Much like Python, LATEXuses libraries to add di�erent speci�c
functionalities, such as adding graphs or changing the text style.

One of the most useful packages has been the Pythonhighlight package. This
package has been used to show the Python syntax using text that resembles code.
The code shown in the Appendix III was imported directly from the �le generated
by blender using the \inputpyhon command.

Another useful library was used to insert charts and images. The charts were
displayed using two libraries: pgfplots (mainly) and pstricks (for more complex
formulas like the Vertical Loop).

Figure 30: Capture of the editor used

As I said earlier, this document can also be accessed online at the following
address: . This website is made using GitHub pages, and
the corresponding LATEXsource code can also be found in the same repository, along
with the Python source code.

Page 77

Mathematical models in Roller Coasters

Page 78

11 Appendix II - Roller Coasters I Rode while Making this Research Project

11 Appendix II - Roller Coasters I Rode while

Making this Research Project

Here is the main information on some of the most important roller coasters in
Europe. These tables include the name of the roller coaster, the manufacturer, the
model (as described by the manufacturer), the scale (which indicates the level),
the year of opening and the number of times I've ridden it since the beginning of
the project.

The main manufacturers are the following (Arrow Dynamics and Custom Coast-
ers International are now defunct, and have mainly been bought by S&S):

Table 1: Manufacturers

Name Abbreviation Country Web-page
Arrow Dynamics Arrow United States https://www.s-s.com/

Mack Rides Mack Rides Germany https://mack-rides.com/
Vekoma Vekoma Netherlands https://www.vekoma.com/

Great Coasters International GCI United States https://greatcoasters.com/
Custom Coasters International CCI United States https://www.s-s.com/

Bolliger & Mabillard B&M Switzerland https://www.bolliger-mabillard.com/
Sansei Technologies S&S United States https://www.s-s.com/

KumbaK KumbaK Netherlands https://www.kumbak.nl/
ART Engineering GmbH ART Germany https://artengineering.de/
Intamin Amusement Rides Intamin Switzerland https://www.intamin.com/

Zamperla Zamperla Italy https://www.zamperla.com/

Roller Coasters

Table 2: Efteling Roller Coasters

Name Manufacturer Model Scale Opened #
Baron 1898 B&M Floorless Extreme 2015 2

Joris en de Draak GCI Wood Twin Thrill 2010 1
Max + Moritz Mack Rides Twin Family 2020 2

Python Vekoma Sit Down Extreme 1981 2
Vliegende Hollander KumbaK Dark Ride Thrill 2007 1

Vogel Rok Vekoma Enclosed Thrill 1998 1

Page 79

https://www.s-s.com/
https://mack-rides.com/
https://www.vekoma.com/
https://greatcoasters.com/
https://www.s-s.com/
https://www.bolliger-mabillard.com/
https://www.s-s.com/
https://www.kumbak.nl/
https://artengineering.de/
https://www.intamin.com/
https://www.zamperla.com/
https://rcdb.com/12083.htm
https://rcdb.com/4526.htm
https://rcdb.com/16697.htm
https://rcdb.com/897.htm
https://rcdb.com/3291.htm
https://rcdb.com/900.htm

Mathematical models in Roller Coasters

Table 3: Europa Park Roller Coasters

Name Manufacturer Model Scale Opened #
Alpenexpress Enzian Mack Rides Grottenblitz Family 1984 1

Arthur Mack Rides Inverted Family 2014 1
Atlantica SuperSplash Mack Rides Water Coaster Thrill 2005 1

Ba-a-a-Express ART Oval Kiddie 2016 1
Blue Fire Megacoaster Mack Rides Launch Coaster Extreme 2009 1

Euro Mir Mack Rides Spinning Coaster Thrill 1997 2
Eurosat - CanCan Coaster Mack Rides Enclosed Coaster Thrill 1989 3

Matterhorn Blitz Mack Rides Wild Mouse Thrill 1999 3
Pegasus Mack Rides Youngstar Coaster Family 2006 2
Poseidon Mack Rides Water Coaster Thrill 2000 2

Schweizer Bobbahn Mack Rides Bobsled Thrill 1985 4
Silver Star B&M Hypercoaster Extreme 2002 5

Wodan Timbur Coaster GCI Wood Extreme 2012 1

Table 4: Phantasialand Roller Coasters

Name Manufacturer Model Scale Opened #
Black Mamba B&M Inverted Extreme 2006 1

Colorado Adventure Vekoma Mine Train Thrill 1996 1
Crazy Bats Vekoma Enclosed Thrill 1988 1
F.L.Y. Vekoma Flying Extreme 2020 2
Raik Vekoma Boomerang Family 2016 1
Taron Intamin Launch Coaster Extreme 2016 1

Table 5: PortAventura Park Roller Coasters

Name Manufacturer Model Scale Opened #
Tren de la Mina Arrow Mine Train Thrill 1995 1
Dragon Khan B&M Sitting Coaster Extreme 1995 1
Furius Baco Intamin Wing Launch Coaster Extreme 2007 1
Shambala B&M Hypercoaster Extreme 2012 1
Stampida CCI Wood - Twin Thrill 1997 1
Tami-Tami Vekoma Junior Coaster Family 1998 1
Tomahawk CCI Wood Family 1997 1

Table 6: Tibidabo Roller Coasters

Name Manufacturer Model Scale Opened #
Muntanya Russa Vekoma Terrain Custom Thrill 2008 1
Tibidabo Express Zamperla Powered Coaster Family 1990 1

Page 80

https://rcdb.com/975.htm
https://rcdb.com/11114.htm
https://rcdb.com/2928.htm
https://rcdb.com/13654.htm
https://rcdb.com/4074.htm
https://rcdb.com/972.htm
https://rcdb.com/973.htm
https://rcdb.com/971.htm
https://rcdb.com/3403.htm
https://rcdb.com/1891.htm
https://rcdb.com/974.htm
https://rcdb.com/1414.htm
https://rcdb.com/10018.htm
https://rcdb.com/3117.htm
https://rcdb.com/978.htm
https://rcdb.com/980.htm
https://rcdb.com/15201.htm
https://rcdb.com/13689.htm
https://rcdb.com/12723.htm
https://rcdb.com/762.htm
https://rcdb.com/760.htm
https://rcdb.com/3430.htm
https://rcdb.com/10239.htm
https://rcdb.com/759.htm
https://rcdb.com/763.htm
https://rcdb.com/761.htm
https://rcdb.com/3596.htm
https://rcdb.com/1831.htm

12 Appendix III - Blender source code

12 Appendix III - Blender source code

Here is the code used to generate the animations. This code can also be accessed
through GitHub on the same repository as the web-page:

The code for the Blender �les is as follows (written in Python):

12.1 Curve Animation

#---

#

DOCUMENT Blender_circle_animation.blend

AUTHOR (Anonymized)

DATE 20-09-2022

#

#---

import bpy

import math

SHINE

bpy.context.scene.render.engine = 'BLENDER_EEVEE '

bpy.context.scene.eevee.use_bloom = True

RESET

bpy.ops.object.select_all(action='SELECT ')

bpy.ops.object.delete(use_global=False)

CAMERA

bpy.ops.object.camera_add(enter_editmode=False , align='VIEW',

location=(0, 0, 35), rotation=(0,

0, 0), scale=(1, 1, 1))

LIGHT

bpy.ops.object.light_add(type='SUN', radius=1, align='WORLD ',

location=(0, 0, 0), scale=(1, 1,

1))

bpy.context.object.data.energy = 2

bpy.context.object.rotation_euler[0] = 0.383972

bpy.context.object.rotation_euler[1] = 1.0821

FLOOR

bpy.ops.mesh.primitive_plane_add(size=25)

FLOOR COLOR

mat_name = "Base"

bpy.ops.material.new()

Page 81

Mathematical models in Roller Coasters

bpy.data.materials[-1].name = mat_name

mat = bpy.data.materials.get(mat_name)

mat.use_nodes = False

bpy.data.materials[mat_name].diffuse_color = (0.1, 0.1, 0.1, 1)

bpy.ops.object.material_slot_add ()

mat = bpy.data.materials.get(mat_name)

ob = bpy.context.active_object

ob.data.materials[0] = mat

SPHERE

bpy.ops.mesh.primitive_ico_sphere_add(radius=0.5, enter_editmode=

False , location=(0, 0, 10))

ico_sphere = bpy.data.objects['Icosphere ']

SPHERE COLOR

mat_name = 'EmiMat '

bpy.ops.material.new()

bpy.data.materials[-1].name = mat_name

bpy.data.materials[mat_name].node_tree.nodes.clear ()

bpy.data.materials[mat_name].node_tree.nodes.new("

ShaderNodeEmission")

bpy.data.materials[mat_name].node_tree.nodes["Emission"].inputs["

Color"].default_value = (0, 0, 1,

1)

bpy.data.materials[mat_name].node_tree.nodes["Emission"].inputs["

Strength"].default_value = 50

bpy.data.materials[mat_name].node_tree.nodes.new("

ShaderNodeOutputMaterial")

links = bpy.data.materials[mat_name].node_tree.links

links.new(

bpy.data.materials[mat_name].node_tree.nodes["Emission"].

outputs[0],

bpy.data.materials[mat_name].node_tree.nodes["Material Output"

].inputs[0])

bpy.ops.object.material_slot_add ()

mat = bpy.data.materials.get(mat_name)

ob = bpy.context.active_object

ob.data.materials[0] = mat

TRAIL

bpy.ops.object.particle_system_add ()

bpy.data.particles["ParticleSettings"].name = "ParticleSettings"

bpy.data.particles["ParticleSettings"].type = 'EMITTER '

bpy.data.particles["ParticleSettings"].frame_end = 200

bpy.data.particles["ParticleSettings"].mass = 0

bpy.data.particles["ParticleSettings"].lifetime = 300

bpy.data.particles["ParticleSettings"].normal_factor = 0

if(bpy.data.particles["ParticleSettings.001"]):

Page 82

12 Appendix III - Blender source code

bpy.ops.object.particle_settings_remove ()

VARIABLES

w = 10

phi0 = 0

R = 5

ANIMATION

for i in range(251):

t = i/60

phi = phi0 + w * t

ico_sphere.location[0] = R * math.cos(phi) # X-axis

ico_sphere.location[1] = R * math.sin(phi) # Y-axis

ico_sphere.location[2] = 2

ico_sphere.keyframe_insert(data_path = "location", frame = i)

RESET OTHER

bpy.context.area.ui_type = "VIEW_3D"

for area in bpy.context.workspace.screens[0].areas:

for space in area.spaces:

if space.type == 'VIEW_3D ':

space.shading.type = "RENDERED"

bpy.context.area.ui_type = "PROPERTIES"

bpy.data.scenes['Scene '].render.fps = 30

bpy.context.area.ui_type = "TIMELINE"

bpy.ops.anim.change_frame(frame=0)

bpy.context.area.ui_type = "TEXT_EDITOR"

Page 83

Mathematical models in Roller Coasters

12.2 Camelback Animation

#---

#

DOCUMENT Blender_camelback_animation.blend

AUTHOR (Anonymized)

DATE 04-11-2022

#

#---

import bpy

import math

SHINE

bpy.context.scene.render.engine = 'BLENDER_EEVEE '

bpy.context.scene.eevee.use_bloom = True

RESET

bpy.data.objects["Icosphere"].select_set(True)

bpy.ops.object.delete(use_global=False)

bpy.data.objects["Camera"].select_set(True)

bpy.ops.object.delete(use_global=False)

bpy.data.objects["Sun"].select_set(True)

bpy.ops.object.delete(use_global=False)

bpy.data.objects["BezierCurve"].select_set(True)

bpy.ops.object.delete(use_global=False)

CAMERA

bpy.ops.object.camera_add(enter_editmode=False , align='VIEW',

location=(0, 100 , 10), rotation=(

math.radians(90), 0, math.radians

(180)), scale=(1, 1, 1))

bpy.context.object.data.type = 'ORTHO'

bpy.context.object.data.ortho_scale = 60

LIGHT

bpy.ops.object.light_add(type='SUN', radius=1, align='WORLD ',

location=(0, 0, 0), scale=(1, 1,

1))

bpy.context.object.data.energy = 2

bpy.context.object.rotation_euler[0] = 0.383972

bpy.context.object.rotation_euler[1] = 1.0821

SPHERE

bpy.ops.mesh.primitive_ico_sphere_add(radius=0.5, enter_editmode=

False , location=(0, 0, 10))

ico_sphere = bpy.data.objects['Icosphere ']

SPHERE COLOR

Page 84

12 Appendix III - Blender source code

mat_name = 'EmiMat '

bpy.ops.material.new()

bpy.data.materials[-1].name = mat_name

bpy.data.materials[mat_name].node_tree.nodes.clear ()

bpy.data.materials[mat_name].node_tree.nodes.new("

ShaderNodeEmission")

bpy.data.materials[mat_name].node_tree.nodes["Emission"].inputs["

Color"].default_value = (0, 0, 1,

1)

bpy.data.materials[mat_name].node_tree.nodes["Emission"].inputs["

Strength"].default_value = 50

bpy.data.materials[mat_name].node_tree.nodes.new("

ShaderNodeOutputMaterial")

links = bpy.data.materials[mat_name].node_tree.links

links.new(

bpy.data.materials[mat_name].node_tree.nodes["Emission"].

outputs[0],

bpy.data.materials[mat_name].node_tree.nodes["Material Output"

].inputs[0])

bpy.ops.object.material_slot_add ()

mat = bpy.data.materials.get(mat_name)

ob = bpy.context.active_object

ob.data.materials[0] = mat

TRAIL

bpy.ops.object.particle_system_add ()

bpy.data.particles["ParticleSettings"].name = "ParticleSettings"

bpy.data.particles["ParticleSettings"].type = 'EMITTER '

bpy.data.particles["ParticleSettings"].frame_end = 200

bpy.data.particles["ParticleSettings"].effector_weights.gravity =

0

bpy.data.particles["ParticleSettings"].effector_weights.all = 0

bpy.data.particles["ParticleSettings"].effector_weights.vortex = 0

bpy.data.particles["ParticleSettings"].effector_weights.force = 0

bpy.data.particles["ParticleSettings"].effector_weights.vortex = 0

bpy.data.particles["ParticleSettings"].effector_weights.magnetic =

0

bpy.data.particles["ParticleSettings"].effector_weights.harmonic =

0

bpy.data.particles["ParticleSettings"].effector_weights.charge = 0

bpy.data.particles["ParticleSettings"].effector_weights.

lennardjones = 0

bpy.data.particles["ParticleSettings"].effector_weights.wind = 0

bpy.data.particles["ParticleSettings"].effector_weights.

curve_guide = 0

bpy.data.particles["ParticleSettings"].effector_weights.texture =

0

bpy.data.particles["ParticleSettings"].effector_weights.smokeflow

= 0

Page 85

Mathematical models in Roller Coasters

bpy.data.particles["ParticleSettings"].effector_weights.turbulence

= 0

bpy.data.particles["ParticleSettings"].effector_weights.drag = 0

bpy.data.particles["ParticleSettings"].effector_weights.boid = 0

bpy.data.particles["ParticleSettings"].lifetime = 300

bpy.data.particles["ParticleSettings"].normal_factor = 0

VARIABLES

fps = 30

g = -9.8

a = 0.05

x = 20

v0 = 0

x0 = x

y0 = a * x **2

vx0 = v0

vy0 = 2*a*vx0

x1 = 0

y1 = 0

vx1 = 0

vy1 = 0

ico_sphere.location[0] = x0

ico_sphere.location[2] = y0

ANIMATION

for i in range(1, 2001):

for j in range(1, 10):

t = 1/(fps * 10)

vx1 = vx0 + ((2*a*x0*g)/(1 + 4*a** 2*x0 ** 2)) * t

vy1 = vy0 + ((4*a*y0*g)/(1 + 4*a*y0)) * t

x1 = x0 + vx0 * t

y1 = y0 + vy0 * t

x0 = x1

y0 = y1

vx0 = vx1

vy0 = vy1

ico_sphere.location[0] = x1 # X-axis

ico_sphere.location[2] = a * x1 **2 # Y-axis

ico_sphere.location[2] = y1 # Y-axis

ico_sphere.keyframe_insert(data_path = "location", frame = i)

SHAPE

number_of_points = 5

coords = [(-x, a * x **2, 0), (-x * 4/5, a * (x * 4/5)**2, 0), (-x

* 3/5, a * (x * 3/5)**2, 0), (-x

* 2/5, a * (x * 2/5)**2, 0), (-x/

Page 86

12 Appendix III - Blender source code

5, a * (x/5) **2, 0), (0, 0, 0), (

x/5, a * (x/5)**2, 0), (x * 2/5,

a * (x * 2/5)**2, 0), (x * 3/5, a

* (x * 3/5)**2, 0), (-x * 4/5, a

* (x * 4/5)**2, 0), (x, a * x **2

, 0)]

#curveData = bpy.data.curves.new('myCurve ', type='CURVE ')

#curveData.dimensions = '3D'

#curveData.resolution_u = 2

#polyline = curveData.splines.new('BEZIER ')

#polyline.bezier_points.add(len(coords))

#for i, coord in enumerate(coords):

x,y,z = coord

polyline.bezier_points[i].co = (x, y, z, 1)

curveOB = bpy.data.objects.new('myCurve ', curveData)

bpy.ops.curve.primitive_bezier_curve_add(enter_editmode=False ,

align='WORLD ', location=(0, -2, 0

), rotation=(math.radians(90), 0,

0))

my_curve = bpy.context.active_object

bpy.ops.object.editmode_toggle ()

bpy.ops.transform.translate(value=(-1, -0, -0), orient_axis_ortho=

'X', orient_type='GLOBAL ',

orient_matrix=((1, 0, 0), (0, 1,

0), (0, 0, 1)),

orient_matrix_type='GLOBAL ',

mirror=False ,

use_proportional_edit=True ,

proportional_edit_falloff='SMOOTH

', proportional_size=1,

use_proportional_connected=False ,

use_proportional_projected=False

)

#bpy.ops.curve.subdivide(number_cuts=number_of_points)

#my_curve.data.splines[0]. bezier_points[3]. select_control_point =

True

bpy.ops.object.editmode_toggle ()

RESET OTHER

bpy.context.area.ui_type = "VIEW_3D"

for area in bpy.context.workspace.screens[0].areas:

Page 87

Mathematical models in Roller Coasters

for space in area.spaces:

if space.type == 'VIEW_3D ':

space.shading.type = "RENDERED"

bpy.context.area.ui_type = "PROPERTIES"

bpy.data.scenes['Scene '].render.fps = fps

bpy.context.area.ui_type = "TIMELINE"

bpy.ops.anim.change_frame(frame=0)

bpy.context.area.ui_type = "TEXT_EDITOR"

Page 88

12 Appendix III - Blender source code

12.3 Catenary Animation

#---

#

DOCUMENT Blender_catenary_animation.blend

AUTHOR (Anonymized)

DATE 04-11-2022

#

#---

import bpy

import math

SHINE

bpy.context.scene.render.engine = 'BLENDER_EEVEE '

bpy.context.scene.eevee.use_bloom = True

RESET

bpy.data.objects["Icosphere"].select_set(True)

bpy.ops.object.delete(use_global=False)

bpy.data.objects["Camera"].select_set(True)

bpy.ops.object.delete(use_global=False)

bpy.data.objects["Sun"].select_set(True)

bpy.ops.object.delete(use_global=False)

#bpy.data.objects [" BezierCurve "]. select_set(True)

#bpy.ops.object.delete(use_global=False)

CAMERA

bpy.ops.object.camera_add(enter_editmode=False , align='VIEW',

location=(0, 100 , 20), rotation=(

math.radians(90), 0, math.radians

(180)), scale=(1, 1, 1))

bpy.context.object.data.type = 'ORTHO'

bpy.context.object.data.ortho_scale = 60

LIGHT

bpy.ops.object.light_add(type='SUN', radius=1, align='WORLD ',

location=(0, 0, 0), scale=(1, 1,

1))

bpy.context.object.data.energy = 2

bpy.context.object.rotation_euler[0] = 0.383972

bpy.context.object.rotation_euler[1] = 1.0821

SPHERE

bpy.ops.mesh.primitive_ico_sphere_add(radius=0.5, enter_editmode=

False , location=(0, 0, 10))

ico_sphere = bpy.data.objects['Icosphere ']

SPHERE COLOR

Page 89

Mathematical models in Roller Coasters

mat_name = 'EmiMat '

bpy.ops.material.new()

bpy.data.materials[-1].name = mat_name

bpy.data.materials[mat_name].node_tree.nodes.clear ()

bpy.data.materials[mat_name].node_tree.nodes.new("

ShaderNodeEmission")

bpy.data.materials[mat_name].node_tree.nodes["Emission"].inputs["

Color"].default_value = (0, 0, 1,

1)

bpy.data.materials[mat_name].node_tree.nodes["Emission"].inputs["

Strength"].default_value = 50

bpy.data.materials[mat_name].node_tree.nodes.new("

ShaderNodeOutputMaterial")

links = bpy.data.materials[mat_name].node_tree.links

links.new(

bpy.data.materials[mat_name].node_tree.nodes["Emission"].

outputs[0],

bpy.data.materials[mat_name].node_tree.nodes["Material Output"

].inputs[0])

bpy.ops.object.material_slot_add ()

mat = bpy.data.materials.get(mat_name)

ob = bpy.context.active_object

ob.data.materials[0] = mat

TRAIL

bpy.ops.object.particle_system_add ()

bpy.data.particles["ParticleSettings"].name = "ParticleSettings"

bpy.data.particles["ParticleSettings"].type = 'EMITTER '

bpy.data.particles["ParticleSettings"].frame_end = 800

bpy.data.particles["ParticleSettings"].effector_weights.gravity =

0

bpy.data.particles["ParticleSettings"].effector_weights.all = 0

bpy.data.particles["ParticleSettings"].effector_weights.vortex = 0

bpy.data.particles["ParticleSettings"].effector_weights.force = 0

bpy.data.particles["ParticleSettings"].effector_weights.vortex = 0

bpy.data.particles["ParticleSettings"].effector_weights.magnetic =

0

bpy.data.particles["ParticleSettings"].effector_weights.harmonic =

0

bpy.data.particles["ParticleSettings"].effector_weights.charge = 0

bpy.data.particles["ParticleSettings"].effector_weights.

lennardjones = 0

bpy.data.particles["ParticleSettings"].effector_weights.wind = 0

bpy.data.particles["ParticleSettings"].effector_weights.

curve_guide = 0

bpy.data.particles["ParticleSettings"].effector_weights.texture =

0

bpy.data.particles["ParticleSettings"].effector_weights.smokeflow

= 0

Page 90

12 Appendix III - Blender source code

bpy.data.particles["ParticleSettings"].effector_weights.turbulence

= 0

bpy.data.particles["ParticleSettings"].effector_weights.drag = 0

bpy.data.particles["ParticleSettings"].effector_weights.boid = 0

bpy.data.particles["ParticleSettings"].lifetime = 800

bpy.data.particles["ParticleSettings"].normal_factor = 0

bpy.data.particles["ParitcleSettings"].mass = 0

VARIABLES

fps = 30

g = -9.8

a = 10

x = 20

v0 = 0

x0 = x

y0 = a * math.cosh(x0/a)

vx0 = v0

vy0 = math.sinh(x/a)

x1 = 0

y1 = 0

vx1 = 0

vy1 = 0

ico_sphere.location[0] = x0

ico_sphere.location[2] = y0

ANIMATION

for i in range (1, 2001):

for j in range(1, 10):

t = 1/(fps * 10)

print(g*math.sinh(x0/a))

vx1 = vx0 + ((g * math.sinh(x0/a))/(1 + math.sinh(x0/a) **2

)) * t

vy1 = vy0 + ((g * math.sinh(x0/a)** 2)/(1 + math.sinh(x0/a)

** 2)) * t

print(vx1)

print(vy1)

print(math.cosh(x1/a))

print("-------------------------------------")

x1 = x0 + vx0 * t

y1 = y0 + vy0 * t

x0 = x1

y0 = y1

vx0 = vx1

vy0 = vy1

ico_sphere.location[0] = x1 # X-axis

ico_sphere.location[2] = a * math.cosh(x1/a) # Y-axis

Page 91

Mathematical models in Roller Coasters

ico_sphere.location[2] = y1 # Y-axis

ico_sphere.keyframe_insert(data_path = "location", frame = i)

SHAPE

number_of_points = 5

coords = [(-x, a * x **2, 0), (-x * 4/5, a * (x * 4/5)**2, 0), (-x

* 3/5, a * (x * 3/5)**2, 0), (-x

* 2/5, a * (x * 2/5)**2, 0), (-x/

5, a * (x/5) **2, 0), (0, 0, 0), (

x/5, a * (x/5)**2, 0), (x * 2/5,

a * (x * 2/5)**2, 0), (x * 3/5, a

* (x * 3/5)**2, 0), (-x * 4/5, a

* (x * 4/5)**2, 0), (x, a * x **2

, 0)]

#curveData = bpy.data.curves.new('myCurve ', type='CURVE ')

#curveData.dimensions = '3D'

#curveData.resolution_u = 2

#polyline = curveData.splines.new('BEZIER ')

#polyline.bezier_points.add(len(coords))

#for i, coord in enumerate(coords):

x,y,z = coord

polyline.bezier_points[i].co = (x, y, z, 1)

curveOB = bpy.data.objects.new('myCurve ', curveData)

bpy.ops.curve.primitive_bezier_curve_add(enter_editmode=False ,

align='WORLD ', location=(0, -2, 0

), rotation=(math.radians(90), 0,

0))

my_curve = bpy.context.active_object

bpy.ops.object.editmode_toggle ()

bpy.ops.transform.translate(value=(-1, -0, -0), orient_axis_ortho=

'X', orient_type='GLOBAL ',

orient_matrix=((1, 0, 0), (0, 1,

0), (0, 0, 1)),

orient_matrix_type='GLOBAL ',

mirror=False ,

use_proportional_edit=True ,

proportional_edit_falloff='SMOOTH

', proportional_size=1,

use_proportional_connected=False ,

use_proportional_projected=False

)

#bpy.ops.curve.subdivide(number_cuts=number_of_points)

Page 92

12 Appendix III - Blender source code

#my_curve.data.splines[0]. bezier_points[3]. select_control_point =

True

bpy.ops.object.editmode_toggle ()

RESET OTHER

bpy.context.area.ui_type = "VIEW_3D"

for area in bpy.context.workspace.screens[0].areas:

for space in area.spaces:

if space.type == 'VIEW_3D ':

space.shading.type = "RENDERED"

bpy.context.area.ui_type = "PROPERTIES"

bpy.data.scenes['Scene '].render.fps = fps

bpy.context.area.ui_type = "TIMELINE"

bpy.ops.anim.change_frame(frame=0)

bpy.context.area.ui_type = "TEXT_EDITOR"

Page 93

Mathematical models in Roller Coasters

12.4 Helix Animation

#---

#

DOCUMENT Blender_helix_animation.blend

AUTHOR (Anonymized)

DATE 02-08-2022

#

#---

import bpy

import math

SHINE

bpy.context.scene.render.engine = 'BLENDER_EEVEE '

bpy.context.scene.eevee.use_bloom = True

RESET

bpy.ops.object.select_all(action='SELECT ')

bpy.ops.object.delete(use_global=False)

CAMERA

bpy.ops.object.camera_add(enter_editmode=False , align='VIEW',

location=(40 , -40 , 35), rotation=

(1.22, -0, 0.785), scale=(1, 1, 1

))

LIGHT

bpy.ops.object.light_add(type='SUN', radius=1, align='WORLD ',

location=(0, 0, 0), scale=(1, 1,

1))

bpy.context.object.data.energy = 2

bpy.context.object.rotation_euler[0] = 0.383972

bpy.context.object.rotation_euler[1] = 1.0821

CILINDER

bpy.ops.mesh.primitive_cube_add(size=1.5, enter_editmode=False ,

align='WORLD ', location=(0, 0, 0)

, scale=(1, 1, 1))

bpy.ops.object.modifier_add(type='SCREW')

bpy.context.object.modifiers["Screw"].screw_offset = 25

bpy.context.object.modifiers["Screw"].iterations = 1

bpy.context.object.modifiers["Screw"].angle = -12.566371

bpy.context.object.modifiers["Screw"].steps = 32

bpy.context.object.modifiers["Screw"].render_steps = 32

bpy.ops.object.modifier_apply(modifier="Screw")

CILINDER COLOR

Page 94

12 Appendix III - Blender source code

mat_name = "Material"

bpy.ops.material.new()

bpy.data.materials[-1].name = mat_name

mat = bpy.data.materials.get(mat_name)

mat.use_nodes = False

bpy.data.materials[mat_name].diffuse_color = (0.1, 0.1, 0.1, 1)

bpy.ops.object.material_slot_add ()

mat = bpy.data.materials.get(mat_name)

ob = bpy.context.active_object

ob.data.materials[0] = mat

FLOOR

bpy.ops.mesh.primitive_plane_add(size=25)

FLOOR COLOR

mat_name = "Base"

bpy.ops.material.new()

bpy.data.materials[-1].name = mat_name

mat = bpy.data.materials.get(mat_name)

mat.use_nodes = False

bpy.data.materials[mat_name].diffuse_color = (0.1, 0.1, 0.1, 1)

bpy.ops.object.material_slot_add ()

mat = bpy.data.materials.get(mat_name)

ob = bpy.context.active_object

ob.data.materials[0] = mat

SPHERE

bpy.ops.mesh.primitive_ico_sphere_add(radius=0.5, enter_editmode=

False , location=(0, 0, 10))

ico_sphere = bpy.data.objects['Icosphere ']

SPHERE COLOR

mat_name = 'EmiMat '

bpy.ops.material.new()

bpy.data.materials[-1].name = mat_name

bpy.data.materials[mat_name].node_tree.nodes.clear ()

bpy.data.materials[mat_name].node_tree.nodes.new("

ShaderNodeEmission")

bpy.data.materials[mat_name].node_tree.nodes["Emission"].inputs["

Color"].default_value = (0, 0, 1,

1)

bpy.data.materials[mat_name].node_tree.nodes["Emission"].inputs["

Strength"].default_value = 50

bpy.data.materials[mat_name].node_tree.nodes.new("

ShaderNodeOutputMaterial")

links = bpy.data.materials[mat_name].node_tree.links

links.new(

bpy.data.materials[mat_name].node_tree.nodes["Emission"].

outputs[0],

Page 95

Mathematical models in Roller Coasters

bpy.data.materials[mat_name].node_tree.nodes["Material Output"

].inputs[0])

bpy.ops.object.material_slot_add ()

mat = bpy.data.materials.get(mat_name)

ob = bpy.context.active_object

ob.data.materials[0] = mat

TRAIL

bpy.ops.object.particle_system_add ()

bpy.data.particles["ParticleSettings"].name = "ParticleSettings"

bpy.data.particles["ParticleSettings"].type = 'EMITTER '

bpy.data.particles["ParticleSettings"].frame_end = 200

bpy.data.particles["ParticleSettings"].effector_weights.gravity =

0

bpy.data.particles["ParticleSettings"].effector_weights.all = 0

bpy.data.particles["ParticleSettings"].effector_weights.vortex = 0

bpy.data.particles["ParticleSettings"].effector_weights.force = 0

bpy.data.particles["ParticleSettings"].effector_weights.vortex = 0

bpy.data.particles["ParticleSettings"].effector_weights.magnetic =

0

bpy.data.particles["ParticleSettings"].effector_weights.harmonic =

0

bpy.data.particles["ParticleSettings"].effector_weights.charge = 0

bpy.data.particles["ParticleSettings"].effector_weights.

lennardjones = 0

bpy.data.particles["ParticleSettings"].effector_weights.wind = 0

bpy.data.particles["ParticleSettings"].effector_weights.

curve_guide = 0

bpy.data.particles["ParticleSettings"].effector_weights.texture =

0

bpy.data.particles["ParticleSettings"].effector_weights.smokeflow

= 0

bpy.data.particles["ParticleSettings"].effector_weights.turbulence

= 0

bpy.data.particles["ParticleSettings"].effector_weights.drag = 0

bpy.data.particles["ParticleSettings"].effector_weights.boid = 0

bpy.data.particles["ParticleSettings"].lifetime = 300

bpy.data.particles["ParticleSettings"].normal_factor = 0

VARIABLES

g = -9.8

R = 2

p = 0.1

v0 = 0

z0 = 25

theta = (g * p)/(2 * R** 2 + 2 * p **2)

ANIMATION

Page 96

12 Appendix III - Blender source code

for i in range(251):

t = i/15

ico_sphere.location[0] = R * math.cos(theta * t **2 + v0 * t +

z0) # X-axis

ico_sphere.location[1] = R * math.sin(theta * t **2 + v0 * t +

z0) # Y-axis

ico_sphere.location[2] = 25 + (-9.8 * ((i/15)/(2 * math.pi))

**2 / 2) # Z-axis

ico_sphere.location[2] = 25 + (g * math.sqrt(R**2 + k**2) * (

i/15)**2)/(k*R*2) # Z-axis

ico_sphere.location[2] = 25 - (i/15) / R

ico_sphere.location[2] = theta * t **2 + v0 * t + z0

ico_sphere.keyframe_insert(data_path = "location", frame = i)

RESET OTHER

bpy.context.area.ui_type = "VIEW_3D"

for area in bpy.context.workspace.screens[0].areas:

for space in area.spaces:

if space.type == 'VIEW_3D ':

space.shading.type = "RENDERED"

bpy.context.area.ui_type = "PROPERTIES"

bpy.data.scenes['Scene '].render.fps = 30

bpy.context.area.ui_type = "TIMELINE"

bpy.ops.anim.change_frame(frame=0)

bpy.context.area.ui_type = "TEXT_EDITOR"

Page 97

Mathematical models in Roller Coasters

12.5 In-line Twist Animation

#---

#

DOCUMENT Blender_in -line_twist_animation.blend

AUTHOR (Anonymized)

DATE 04-11-2022

#

#---

import bpy

import math

SHINE

bpy.context.scene.render.engine = 'BLENDER_EEVEE '

bpy.context.scene.eevee.use_bloom = True

RESET

bpy.ops.object.select_all(action='SELECT ')

bpy.ops.object.delete(use_global=False)

CAMERA

bpy.ops.object.camera_add(enter_editmode=False , align='VIEW',

location=(160 , 350 , 200),

rotation=(math.radians(60), 0,

math.radians(150)), scale=(1, 1,

1))

bpy.context.object.data.type = 'ORTHO'

bpy.context.object.data.ortho_scale = 150

LIGHT

bpy.ops.object.light_add(type='SUN', radius=1, align='WORLD ',

location=(0, 0, 0), scale=(1, 1,

1))

bpy.context.object.data.energy = 2

bpy.context.object.rotation_euler[0] = 0.383972

bpy.context.object.rotation_euler[1] = 1.0821

CILINDER

bpy.ops.mesh.primitive_cylinder_add(radius=2, depth=120 ,

enter_editmode=False , align='

WORLD ', location=(0, 60, 0),

rotation=(1.5708 , 0, 0), scale=(3

, 1, 3))

CILINDER COLOR

bpy.ops.material.new()

bpy.data.materials["Material"].node_tree.nodes["Principled BSDF"].

inputs[0].default_value = (0.1, 0

Page 98

12 Appendix III - Blender source code

.1, 0.1, 1)

SPHERE

bpy.ops.mesh.primitive_ico_sphere_add(radius=0.5, enter_editmode=

False , location=(0, 0, 10), scale

=(2, 2, 2))

ico_sphere = bpy.data.objects['Icosphere ']

SPHERE COLOR

mat_name = 'EmiMat '

bpy.ops.material.new()

bpy.data.materials[-1].name = mat_name

bpy.data.materials[mat_name].node_tree.nodes.clear ()

bpy.data.materials[mat_name].node_tree.nodes.new("

ShaderNodeEmission")

bpy.data.materials[mat_name].node_tree.nodes["Emission"].inputs["

Color"].default_value = (0, 0, 1,

1)

bpy.data.materials[mat_name].node_tree.nodes["Emission"].inputs["

Strength"].default_value = 50

bpy.data.materials[mat_name].node_tree.nodes.new("

ShaderNodeOutputMaterial")

links = bpy.data.materials[mat_name].node_tree.links

links.new(

bpy.data.materials[mat_name].node_tree.nodes["Emission"].

outputs[0],

bpy.data.materials[mat_name].node_tree.nodes["Material Output"

].inputs[0])

bpy.ops.object.material_slot_add ()

mat = bpy.data.materials.get(mat_name)

ob = bpy.context.active_object

ob.data.materials[0] = mat

TRAIL

#C = bpy.data.objects['Icosphere ']

#ps = C.particle_systems['ParticleSystem '].settings

bpy.ops.object.particle_system_add ()

bpy.ops.object.ParticleSettings = "ParticleSettings"

#if not 'ParticleSettings ':

if True:

bpy.data.particles["ParticleSettings"].name = "

ParticleSettings"

bpy.data.particles["ParticleSettings"].type = 'EMITTER '

bpy.data.particles["ParticleSettings"].frame_end = 1000

bpy.data.particles["ParticleSettings"].effector_weights.

gravity = 0

#bpy.data.particles [" ParticleSettings "]. effector_weights.all =

0

Page 99

Mathematical models in Roller Coasters

#bpy.data.particles [" ParticleSettings "]. effector_weights.

vortex = 0

#bpy.data.particles [" ParticleSettings "]. effector_weights.force

= 0

#bpy.data.particles [" ParticleSettings "]. effector_weights.

vortex = 0

#bpy.data.particles [" ParticleSettings "]. effector_weights.

magnetic = 0

#bpy.data.particles [" ParticleSettings "]. effector_weights.

harmonic = 0

#bpy.data.particles [" ParticleSettings "]. effector_weights.

charge = 0

#bpy.data.particles [" ParticleSettings "]. effector_weights.

lennardjones = 0

#bpy.data.particles [" ParticleSettings "]. effector_weights.wind

= 0

#bpy.data.particles [" ParticleSettings "]. effector_weights.

curve_guide = 0

#bpy.data.particles [" ParticleSettings "]. effector_weights.

texture = 0

#bpy.data.particles [" ParticleSettings "]. effector_weights.

smokeflow = 0

#bpy.data.particles [" ParticleSettings "]. effector_weights.

turbulence = 0

#bpy.data.particles [" ParticleSettings "]. effector_weights.drag

= 0

#bpy.data.particles [" ParticleSettings "]. effector_weights.boid

= 0

bpy.data.particles["ParticleSettings"].lifetime = 1000

bpy.data.particles["ParticleSettings"].normal_factor = 0

bpy.data.particles["ParticleSettings"].mass = 0

VARIABLES

fps = 30

g = 9.8

R = 10

k = 2

ddtheta = 0

theta0 = math.radians(90)

dtheta0 = 1

x0 = R * math.cos(theta0)

y0 = k * theta0

z0 = R * math.sin(theta0)

x1 = 0

y1 = 0

z1 = 0

theta1 = 0

Page 100

12 Appendix III - Blender source code

dtheta1 = 0

ico_sphere.location[0] = x0

ico_sphere.location[1] = y0

ico_sphere.location[2] = z0

ico_sphere.keyframe_insert(data_path = "location", frame = 0)

ANIMATION

for i in range(1, 1000):

for j in range(1, 100):

t = 1/(fps * 100)

costheta0 = math.cos(theta0)

sintheta0 = math.sin(theta0)

ddtheta = - (g * R * costheta0)/(R ** 2 + k **2)

dtheta1 = ddtheta * t + dtheta0

theta1 = dtheta0 * t + theta0

x1 = R * costheta0

y1 = k * theta0

z1 = R * sintheta0

x0 = x1

y0 = y1

z0 = z1

theta0 = theta1

dtheta0 = dtheta1

ico_sphere.location[0] = x1 # X-axis

ico_sphere.location[1] = y1 # Y-axis

ico_sphere.location[2] = z1 # Z-axis

ico_sphere.keyframe_insert(data_path = "location", frame = i)

RESET OTHER

bpy.context.area.ui_type = "VIEW_3D"

for area in bpy.context.workspace.screens[0].areas:

for space in area.spaces:

if space.type == 'VIEW_3D ':

space.shading.type = "RENDERED"

bpy.context.area.ui_type = "PROPERTIES"

bpy.data.scenes['Scene '].render.fps = fps

bpy.context.area.ui_type = "TIMELINE"

bpy.ops.anim.change_frame(frame=0)

bpy.context.area.ui_type = "TEXT_EDITOR"

Page 101

Mathematical models in Roller Coasters

12.6 Vertical Loop Animation

#---

#

DOCUMENT DOCUMENT Blender_vertical_loop_animation.blend

AUTHOR (Anonymized)

DATE 02-08-2022

#

#---

import bpy

import math

SHINE

bpy.context.scene.render.engine = 'BLENDER_EEVEE '

bpy.context.scene.eevee.use_bloom = True

RESET

bpy.ops.object.select_all(action='SELECT ')

bpy.ops.object.delete(use_global=False)

CAMERA

bpy.ops.object.camera_add(enter_editmode=False , align='VIEW',

location=(10 , 100 , 20), rotation=

(math.radians(90), 0, math.

radians(180)), scale=(1, 1, 1))

bpy.context.object.data.type = 'ORTHO'

bpy.context.object.data.ortho_scale = 60

LIGHT

bpy.ops.object.light_add(type='SUN', radius=1, align='WORLD ',

location=(0, 0, 0), scale=(1, 1,

1))

bpy.context.object.data.energy = 2

bpy.context.object.rotation_euler[0] = 0.383972

bpy.context.object.rotation_euler[1] = 1.0821

SPHERE

bpy.ops.mesh.primitive_ico_sphere_add(radius=0.5, enter_editmode=

False , location=(0, 0, 10))

ico_sphere = bpy.data.objects['Icosphere ']

SPHERE COLOR

mat_name = 'EmiMat '

bpy.ops.material.new()

bpy.data.materials[-1].name = mat_name

bpy.data.materials[mat_name].node_tree.nodes.clear ()

bpy.data.materials[mat_name].node_tree.nodes.new("

ShaderNodeEmission")

Page 102

12 Appendix III - Blender source code

bpy.data.materials[mat_name].node_tree.nodes["Emission"].inputs["

Color"].default_value = (0, 0, 1,

1)

bpy.data.materials[mat_name].node_tree.nodes["Emission"].inputs["

Strength"].default_value = 50

bpy.data.materials[mat_name].node_tree.nodes.new("

ShaderNodeOutputMaterial")

links = bpy.data.materials[mat_name].node_tree.links

links.new(

bpy.data.materials[mat_name].node_tree.nodes["Emission"].

outputs[0],

bpy.data.materials[mat_name].node_tree.nodes["Material Output"

].inputs[0])

bpy.ops.object.material_slot_add ()

mat = bpy.data.materials.get(mat_name)

ob = bpy.context.active_object

ob.data.materials[0] = mat

TRAIL

bpy.ops.object.particle_system_add ()

bpy.data.particles["ParticleSettings"].name = "ParticleSettings"

bpy.data.particles["ParticleSettings"].type = 'EMITTER '

bpy.data.particles["ParticleSettings"].frame_end = 200

bpy.data.particles["ParticleSettings"].effector_weights.gravity =

0

bpy.data.particles["ParticleSettings"].effector_weights.all = 0

bpy.data.particles["ParticleSettings"].effector_weights.vortex = 0

bpy.data.particles["ParticleSettings"].effector_weights.force = 0

bpy.data.particles["ParticleSettings"].effector_weights.vortex = 0

bpy.data.particles["ParticleSettings"].effector_weights.magnetic =

0

bpy.data.particles["ParticleSettings"].effector_weights.harmonic =

0

bpy.data.particles["ParticleSettings"].effector_weights.charge = 0

bpy.data.particles["ParticleSettings"].effector_weights.

lennardjones = 0

bpy.data.particles["ParticleSettings"].effector_weights.wind = 0

bpy.data.particles["ParticleSettings"].effector_weights.

curve_guide = 0

bpy.data.particles["ParticleSettings"].effector_weights.texture =

0

bpy.data.particles["ParticleSettings"].effector_weights.smokeflow

= 0

bpy.data.particles["ParticleSettings"].effector_weights.turbulence

= 0

bpy.data.particles["ParticleSettings"].effector_weights.drag = 0

bpy.data.particles["ParticleSettings"].effector_weights.boid = 0

bpy.data.particles["ParticleSettings"].lifetime = 300

bpy.data.particles["ParticleSettings"].normal_factor = 0

Page 103

Mathematical models in Roller Coasters

VARIABLES

fps = 30

g = - 9.8

ddtheta = 0

theta0 = 0

dtheta0 = 5

x0 = 0

y0 = 0

vx0 = math.cos(theta0 **2)

vy0 = math.sin(theta0 **2)

x1 = 0

y1 = 0

vx1 = 0

vy1 = 0

theta1 = 0

dtheta1 = 0

ico_sphere.location[0] = x0

ico_sphere.location[2] = y0

ico_sphere.keyframe_insert(data_path = "location", frame = 0)

ANIMATION

for i in range(1, 2000):

for j in range(1, 2000):

t = 1/(fps * 20000)

ddtheta = g * math.sin(theta0 ** 2)

dtheta1 = ddtheta * t + dtheta0

theta1 = dtheta0 * t + theta0

vx1 = math.cos(theta0 **2)

x1 = vx0 * t + x0

vy1 = math.sin(theta0 **2)

y1 = vy0 * t + y0

x0 = x1

y0 = y1

vx0 = vx1

vy0 = vy1

theta0 = theta1

dtheta0 = dtheta1

ico_sphere.location[0] = x1 * 150 # X-axis

ico_sphere.location[2] = y1 * 150 # Y-axis

ico_sphere.keyframe_insert(data_path = "location", frame = i)

RESET OTHER

Page 104

12 Appendix III - Blender source code

bpy.context.area.ui_type = "VIEW_3D"

for area in bpy.context.workspace.screens[0].areas:

for space in area.spaces:

if space.type == 'VIEW_3D ':

space.shading.type = "RENDERED"

bpy.context.area.ui_type = "PROPERTIES"

bpy.data.scenes['Scene '].render.fps = fps

bpy.context.area.ui_type = "TIMELINE"

bpy.ops.anim.change_frame(frame=0)

bpy.context.area.ui_type = "TEXT_EDITOR"

Page 105

Mathematical models in Roller Coasters

12.7 Corkscrew Animation

#---

#

DOCUMENT Blender_corkscrew_animation.blend

AUTHOR (Anonymized)

DATE 04-11-2022

#

#---

import bpy

import math

SHINE

bpy.context.scene.render.engine = 'BLENDER_EEVEE '

bpy.context.scene.eevee.use_bloom = True

RESET

bpy.ops.object.select_all(action='SELECT ')

bpy.ops.object.delete(use_global=False)

CAMERA

bpy.ops.object.camera_add(enter_editmode=False , align='VIEW',

location=(0.43 , 0.68 , 0.2),

rotation=(math.radians(75), 0,

math.radians(150)), scale=(1, 1,

1))

bpy.context.object.data.type = 'PERSP'

mainCamera = bpy.context.object

mainCamera.data.lens = 50.0

mainCamera.data.clip_start = 0.00005

mainCamera.data.clip_end = 200

LIGHT

bpy.ops.object.light_add(type='SUN', radius=1, align='WORLD ',

location=(0, 0, 0), scale=(1, 1,

1))

bpy.context.object.data.energy = 2

bpy.context.object.rotation_euler[0] = 0.383972

bpy.context.object.rotation_euler[1] = 1.0821

CILINDER

#bpy.ops.mesh.primitive_cylinder_add(radius=2, depth=120 ,

enter_editmode=False , align='

WORLD ', location =(0, 60, 0),

rotation =(1.5708 , 0, 0), scale=(3

, 3, 1))

CILINDER COLOR

Page 106

12 Appendix III - Blender source code

#bpy.ops.material.new()

#bpy.data.materials [" Material "]. node_tree.nodes [" Principled BSDF

"]. inputs[0]. default_value = (0.1

, 0.1, 0.1, 1)

SPHERE

#bpy.ops.mesh.primitive_ico_sphere_add(radius=0.5, enter_editmode=

False , location =(0, 0, 10), scale

=(2, 2, 2))

bpy.ops.mesh.primitive_ico_sphere_add(radius=0.5, enter_editmode=

False , location=(0, 0, 10), scale

=(0.01, 0.01, 0.01))

ico_sphere = bpy.data.objects['Icosphere ']

SPHERE COLOR

mat_name = 'EmiMat '

bpy.ops.material.new()

bpy.data.materials[-1].name = mat_name

bpy.data.materials[mat_name].node_tree.nodes.clear ()

bpy.data.materials[mat_name].node_tree.nodes.new("

ShaderNodeEmission")

bpy.data.materials[mat_name].node_tree.nodes["Emission"].inputs["

Color"].default_value = (0, 0, 1,

1)

bpy.data.materials[mat_name].node_tree.nodes["Emission"].inputs["

Strength"].default_value = 50

bpy.data.materials[mat_name].node_tree.nodes.new("

ShaderNodeOutputMaterial")

links = bpy.data.materials[mat_name].node_tree.links

links.new(

bpy.data.materials[mat_name].node_tree.nodes["Emission"].

outputs[0],

bpy.data.materials[mat_name].node_tree.nodes["Material Output"

].inputs[0])

bpy.ops.object.material_slot_add ()

mat = bpy.data.materials.get(mat_name)

ob = bpy.context.active_object

ob.data.materials[0] = mat

TRAIL

#C = bpy.data.objects['Icosphere ']

#ps = C.particle_systems['ParticleSystem '].settings

bpy.ops.object.particle_system_add ()

bpy.ops.object.ParticleSettings = "ParticleSettings"

#if not 'ParticleSettings ':

if True:

bpy.data.particles["ParticleSettings"].name = "

ParticleSettings"

bpy.data.particles["ParticleSettings"].type = 'EMITTER '

Page 107

Mathematical models in Roller Coasters

bpy.data.particles["ParticleSettings"].count = 2000

bpy.data.particles["ParticleSettings"].frame_end = 500

bpy.data.particles["ParticleSettings"].effector_weights.

gravity = 0

bpy.data.particles["ParticleSettings"].lifetime = 1000

bpy.data.particles["ParticleSettings"].normal_factor = 0

bpy.data.particles["ParticleSettings"].mass = 0

VARIABLES

fps = 30 # frames per second

g = - 9.8 # gravity

R = 10 # radius

k = 0.05

ddtheta = 0

f = 0 # frame

h = 300 # frames in in -line twist

w = 0 # number of half -rotations in in-line twist

t = 1/(fps * 50000)

clothoidConstant = 0.5

theta0 = 0

dtheta0 = 5

vx0 = 0

vy0 = 0

vz0 = 0

x0 = 0

y0 = 0

z0 = 0

xPosSwitch = 0

yPosSwitch = 0

zPosSwitch = 0

x1 = 0

y1 = 0

z1 = 0

vx1 = 0

vy1 = 0

vz1 = 0

theta1 = 0

dtheta1 = 0

ico_sphere.location[0] = x0

ico_sphere.location[1] = y0

ico_sphere.location[2] = z0

ico_sphere.keyframe_insert(data_path = "location", frame = 0)

ANIMATION - Loop

while (2 * theta0 * math.cos(theta0 **2) >= 0):

Page 108

12 Appendix III - Blender source code

f = f + 1

for j in range(1, 100):

ddtheta = g * math.sin(theta0 ** 2)

dtheta1 = dtheta0 + ddtheta * t

theta1 = theta0 + dtheta0 * t

vx1 = math.cos(theta0 **2)

x1 = vx0 * t + x0

y1 = k * theta0

vz1 = math.sin(theta0 **2) * 1.2

z1 = vz0 * t + z0

x0 = x1

z0 = z1

vx0 = vx1

vz0 = vz1

theta0 = theta1

dtheta0 = dtheta1

ico_sphere.location[0] = x1 # X-axis

ico_sphere.location[1] = y1 # Y-axis

ico_sphere.location[2] = z1 # Z-axis

ico_sphere.keyframe_insert(data_path = "location", frame = f)

#R = (clothoidConstant **2)/theta0

R = 0.08

lastTheta = theta0

lastdTheta = dtheta0

xPosSwitch = x1 - R

yPosSwitch = y1

zPosSwitch = z1

print("

--

")

print(str(f) + " | " + str(2 * theta0 * math.cos(theta0 **2)) + " |

" + str(dtheta0))

print(str(R) + " | " + str(theta0) + " ||| "+ str(xPosSwitch) + "

| " + str(yPosSwitch) + " | " +

str(zPosSwitch))

theta0 = 0

dtheta0 = 20

#for i in range(int(f), int(f + h) + 1):

ANIMATION - Twist

while (w < 5):

Page 109

Mathematical models in Roller Coasters

if w % 2 == 0:

if (- math.sin(theta0) >= 0):

w = w + 1

print("PATH 1: " + str(f))

else:

if (- math.sin(theta0) <= 0):

w = w + 1

print("PATH 2: " + str(f))

f = f + 1

#for i in range(41 , 341):

for j in range(1, 100):

costheta0 = math.cos(theta0)

sintheta0 = math.sin(theta0)

ddtheta = (g * R * costheta0)/(R** 2 + k **2)

dtheta1 = ddtheta * t + dtheta0

theta1 = dtheta0 * t + theta0

x1 = R * costheta0

y1 = k * theta0/2

z1 = R * sintheta0

x0 = x1

y0 = y1

z0 = z1

theta0 = theta1

dtheta0 = dtheta1

ico_sphere.location[0] = x1 + xPosSwitch # X-axis

ico_sphere.location[1] = y1 + yPosSwitch # Y-axis

ico_sphere.location[2] = z1 + zPosSwitch # Z-axis

ico_sphere.keyframe_insert(data_path = "location", frame = f)

#print("> " + str(x1) + " | " + str(y1) + " | "+ str(z1) + " |

" + str(xPosSwitch) + " | "

+ str(yPosSwitch) + " | " +

str(zPosSwitch))

theta0 = lastTheta

xPosSwitch = xPosSwitch - R

dtheta0 = lastdTheta

x0 = 0

y0 = 0

z0 = 0

print(str(f) + " | " + str(2 * theta0 * math.cos(theta0 ** 2)) + " |

" + str(dtheta0))

print(str(R) + " | " + str(theta0) + " ||| "+ str(xPosSwitch) + "

| " + str(yPosSwitch) + " | " +

Page 110

12 Appendix III - Blender source code

str(zPosSwitch))

f1 = f

ANIMATION - Loop

#while (z0 + zPosSwitch >= 0):

while(x1 <= xPosSwitch + 2*R):

f = f + 1

for j in range(1, 100):

ddtheta = (g * math.sin(theta0 ** 2))

dtheta1 = dtheta0 - ddtheta * t

theta1 = theta0 - dtheta0 * t

vx1 = math.cos(theta0 **2)

x1 = vx0 * t + x0

vz1 = math.sin(theta0 **2) * 1.2

z1 = -vz0 * t + z0

x0 = x1

z0 = z1

vx0 = vx1

vz0 = vz1

theta0 = theta1

dtheta0 = dtheta1

ico_sphere.location[0] = x1 + xPosSwitch # X-axis

ico_sphere.location[2] = z1 + zPosSwitch # Z-axis

ico_sphere.keyframe_insert(data_path = "location", frame = f)

print(str(f) + " | " + str(2 * theta0 * math.cos(theta0 **2)) + " |

" + str(dtheta0))

theta0 = 0

yPosSwitch = y1 + 2*yPosSwitch

f1 = f

while (theta0 <= lastTheta):

for j in range(1, 100):

ddtheta = g * math.sin(theta0 ** 2)

dtheta1 = dtheta0 + ddtheta * t

theta1 = theta0 + dtheta0 * t

vx1 = math.cos(theta0 **2)

x1 = vx0 * t + x0

y1 = - k * theta0

vz1 = math.sin(theta0 **2) * 1.2

z1 = vz0 * t + z0

Page 111

Mathematical models in Roller Coasters

x0 = x1

z0 = z1

vx0 = vx1

vz0 = vz1

theta0 = theta1

dtheta0 = dtheta1

ico_sphere.location[1] = y1 + yPosSwitch # Y-axis

ico_sphere.keyframe_insert(data_path = "location", index = 1,

frame = f1)

f1 = f1 - 1

RESET OTHER

bpy.context.area.ui_type = "VIEW_3D"

for area in bpy.context.workspace.screens[0].areas:

for space in area.spaces:

if space.type == 'VIEW_3D ':

space.shading.type = "RENDERED"

bpy.context.area.ui_type = "PROPERTIES"

bpy.data.scenes['Scene '].render.fps = fps

bpy.data.scenes['Scene '].frame_end = f

bpy.context.area.ui_type = "TIMELINE"

bpy.ops.anim.change_frame(frame=0)

bpy.context.area.ui_type = "TEXT_EDITOR"

Page 112

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	Introduction
	Notes on Mathematical Concepts and Notation
	General Method for Finding The Law of Motion
	The Differential Equation
	Euler's Method
	General Rules

	Explicit Elements
	Curve
	Camelback (Parabola)
	Catenary

	Parameterized Elements
	Helix
	In-line Twist
	Vertical Loop (Clothoid)
	Corkscrew

	Animations
	Data Collection from Real Roller Coasters
	Silver Star
	Python
	Baron 1898

	Conclusions
	Bibliography and References
	Appendix I - How this document was made
	Appendix II - Roller Coasters I Rode while Making this Research Project
	Appendix III - Blender source code
	Curve Animation
	Camelback Animation
	Catenary Animation
	Helix Animation
	In-line Twist Animation
	Vertical Loop Animation
	Corkscrew Animation

